
Corrosion Issues in Advanced Coal-Fired Boilers FEAA116 (2014 – 2018?)

Bruce Pint and Stephen Raiman

Corrosion Science & Technology Group Materials Science and Technology Division Oak Ridge National Laboratory Oak Ridge, TN 37831-6156 USA (pintba@ornl.gov)

Presentation for 2018 Crosscutting Research Project Review Meeting April 11, 2018

ORNL is managed by UT-Battelle for the US Department of Energy

Acknowledgments

- G. Garner, M. Stephens, M. Howell oxidation experiments
- T. Lowe SEM, image analysis
- T. Jordan metallography, hardness
- D. Leonard EPMA
- A. Willoughby, P. Doyle, R. De Las Casas Aranda water loop
- Special thanks for shot peening and steam oxidation tasks:
 - American Electric Power (commercial 304H tubes)
 - EPRI (J. Shingledecker, I. Wright, S. Kung)
 - Barry Dooley (Structural Integrity Assoc.)
 - Steve Paterson (PIKA Solutions)

Project is studying corrosion issues relevant to current and advanced boilers

Goals and Objectives

 This project is addressing critical corrosion & environmental effects issues in current and future coal-fired boilers focusing on the water-steamside for waterwalls and superheaters

Milestones

- FY17
 - Complete final report on shot peened stainless steel oxidation (3/31/17, delayed)
 - Compare oxide microstructure formed on steam at 1 & 200 bar (6/30/17, delayed)
 - Demonstrate in-situ crack growth measurements in 200°C water (9/30/17, delayed)
- FY18
 - Submit publication comparing crack growth behavior of 2.25 & 9%Cr in flowing water (6/18)
 - Report on the effect of pressure and water chemistry on oxide scale growth (9/30/18)
 - Complete a report assessing current importance of oxide scale exfoliation (9/30/18)
 OAK RII

Science approach to "real world" corrosion issues

- Task 1: Steam oxidation
 - Study of baseline alloys and shot-peening "solution" at 550°-650°C
- Task 2: Stress corrosion cracking
 - 21/4 %Cr waterwall steels: Grades 22, 23, 24
 - Significant issue in new boilers
 - Need for more detailed understanding
- Task 3: Effect of pressure on corrosion
 - Steam-side difference between laboratory and field
 - EPRI: does water chemistry also play a role?
 - Fire-side effects
 - SPOC: staged pressurized oxy-combustion (with Wash. U @ St. Louis)
 - CO₂ effects from related project FEAA123

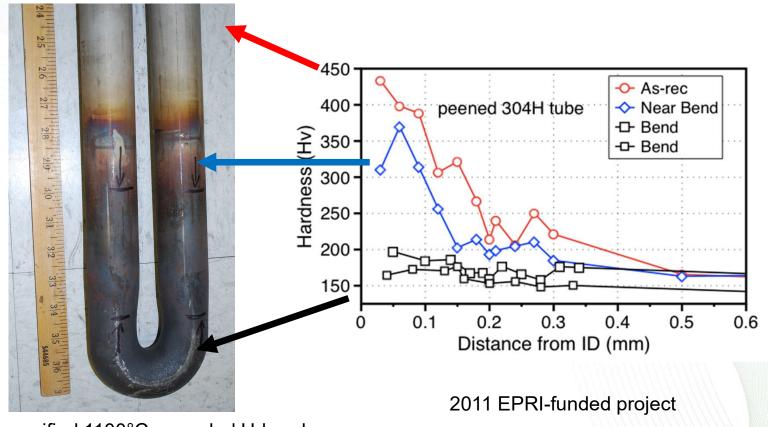
"USC" John W. Turk Plant solution (commissioned 2013)

"Ultra-supercritical" coal-fired steam plant by B&W/AEP in Fulton, AR

- 600MW, ~39% LHV efficiency
- \$1.8billion (\$2.8b?)
- Steam: 599°/607°C SH/RH 25.3MPa (1110/1125°F)
 - Eddystone (1960): 613°C/34.5MPa
- Superheater: shot-peened 347H
 - 17.5Cr-10Ni-0.5Nb-1.5Mn-0.4Si-0.07C

Task 1: Why focus on shot peening?

- Scale exfoliation is the main driver for this task
 - H₂O-accelerated oxidation of steels (steam-side)
 - Simultaneous spallation of thick oxide
 - Tube failures & erosion damage
 - Costs: unplanned shutdowns, mitigation
- Shot peening of austenitic tubes
 - Industry standard to address exfoliation
 - Reduced scale growth: avoids exfoliation issue
 - Limited understanding of benefit and procedure



Shot peening increases the near-surface dislocation density which increases hardness and Cr diffusivity

ASME-specified 1100°C annealed U-bend

Several options for steam exposures

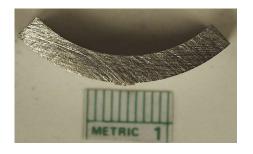
Tube furnace: 1 bar CO₂ 500-h cycles

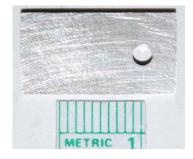
Standard procedure

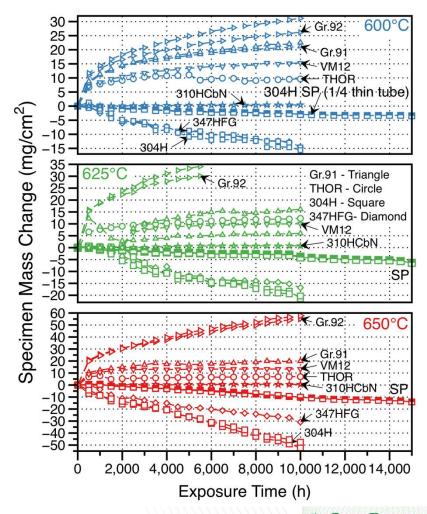
"Keiser" rig: 500-h cycles, 1-43 bar CO₂

Pressures of 1-43 bar

Autoclave: 275 bar water 500-h cycles

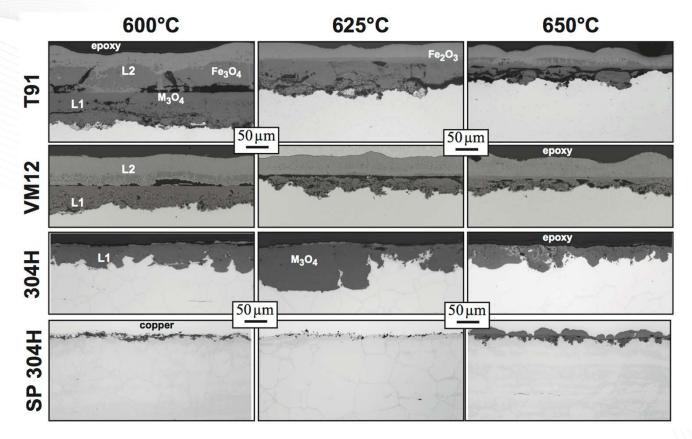


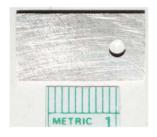

1L volume restricts exposure

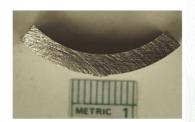

High purity Ar-bubbled, filtered water with conductivity <0.1µS and <10 ppb O₂

Completed 15,000 h of testing

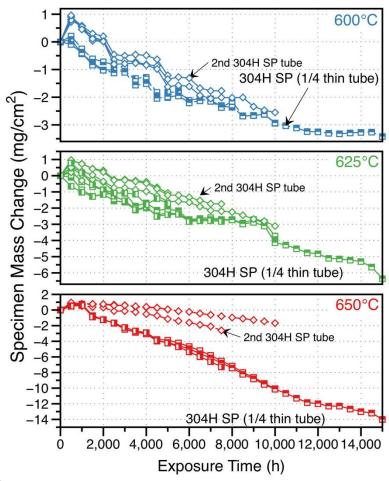
- Tube sections removed at various times
- Polished alloy coupons for comparison
 - Gr.91
 - Gr.92
 - THOR
 - VM12
 - Gr.93 (new CSEF steel)
 - CPJ7 (just started)

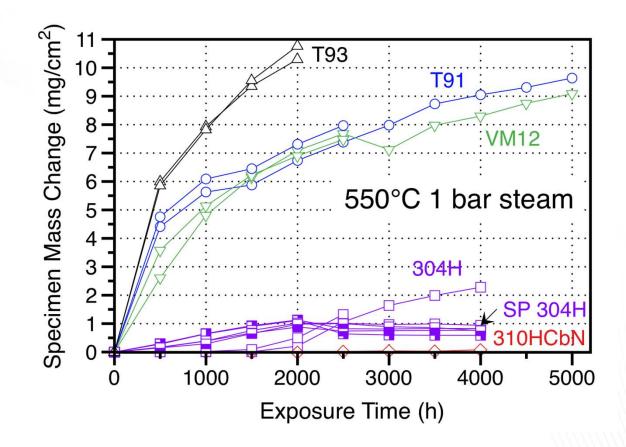




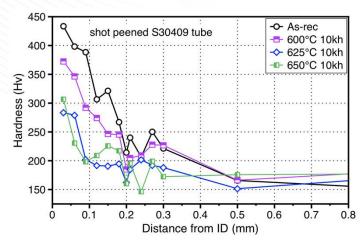


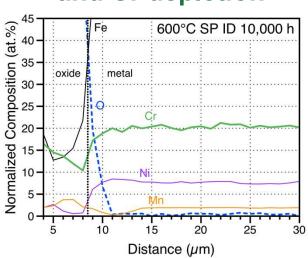
Clear shot-peening benefit at 10,000 h but oxide growing thicker at 650°C



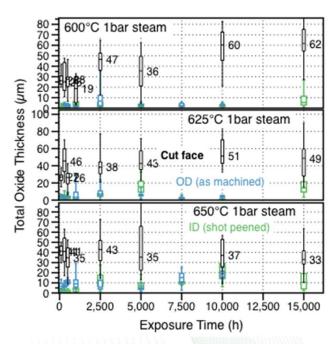

Specimens from 2nd 304H tube finished 10,000 h in 2017

Specimens removed at: 0.5, 1, 2.5, 5, 7.5, 10 kh (15 kh only for 1st tube)


Currently running 550°C (relevant to more boilers)

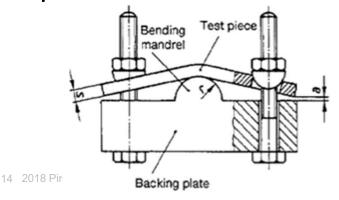


Considerable characterization work remains to complete journal article


Post-exposure hardness measurements

Microprobe of scale and Cr depletion

Quantified oxide thickness on 1st tube



Finish similar work for 2nd tube and microscopy (e.g. EBSD)

Task 2: stress corrosion cracking

- 2.25%Cr waterwall steels: Grades 22,23,24
 - High strength steels are susceptible
 - Including 9Cr steels (Grades 91,92)
- significant problem for new boilers in US (T23) and EU (T24)
- Stress-environment interaction: 25°-300°C
- Jones test to apply stress (complicated)
- prior results in aerated and deaerated water

Alloy	Test Condition					
	As Re	ceived	Normalized			
	Aerated	Deaerated	Aerated	Deaerated		
T23			\square			
T24						
T92			\square			

□ Did Not Crack

☑ Cracked

Water loop built to have better environment control

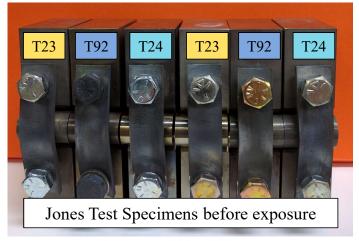
Recirculating water system

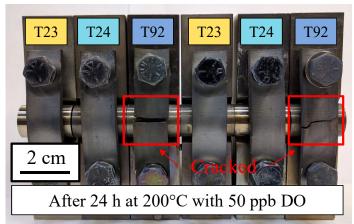
- based on GE systems

200°C autoclave

Simulate actual fossil environments with controlled pH and pO₂ levels

Next phase of testing completed in 2017


- Jones test conducted in 200°C water
 - Normalized steel (0.5h,1065°C WQ)
 - 50 ppb O₂
 - 100 ppb O₂
- Increasing attack as O₂ level increased
- Previous work concluded only 24 h needed


DO	Deaerated*	50 ppb	100 ppb	Air saturated* (~8400 ppb DO)
Time	72 h	24 h	24 h	72 h
T23	О	О	О	X
T24	О	О	X	X
T91	О	X	X	X

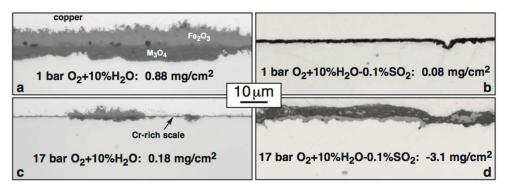
O: Uncracked

X: Cracked

*J.K. Thompson, S.J. Pawel, 2015

Progression of SCC testing planned SCC = stress + environment + microstructure

- Closed autoclave
 - Aerated or deaerated water (no cracking without O₂)
- Autoclave with controlled flowing water
- In-situ probe to monitor crack growth in autoclave
 - Monitor Jones test while incrementally increasing O₂ content in water
 - Task deferred to 2018 to explore electrochemical methods
- Controlled stress in flowing water
 - Tensile test frame needed
 - Monitor crack growth rate changes with water chemistry
 - GE Global Research specialty that was downsized
- Are their critical temperatures? Hardness? Any solutions?


Task 3: effect of pressure (adding water chemistry)

Steamside

- steam oxidation field-lab disconnect
- field (high pressure) ≠ lab (typically 1 bar)
- need uniform test procedure to study

- Fireside

- for Staged-Pressurized Oxy-Combustion (SPOC)
- previous work with Washington Univ. (St. Louis)
 - R. Axelbaum and B. Kumfer

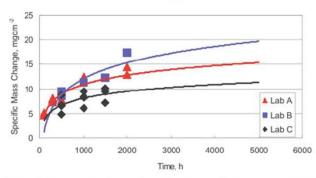
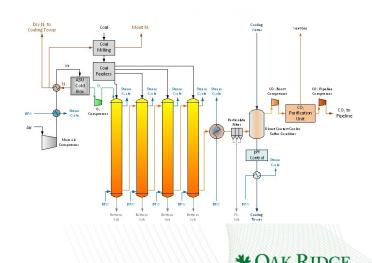



Figure 2 Intercomparison of specific mass change measurements on T92 martensitic steel after exposure to steam for up to 2000 h at 600°C (after [4]).

18 2018 Pint FE Talk

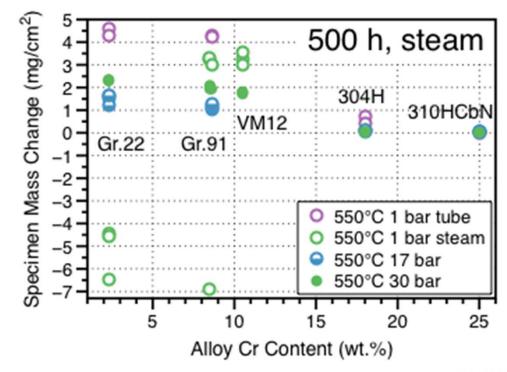
Several options for steam exposures

Tube furnace: 1 bar CO₂ 500-h cycles

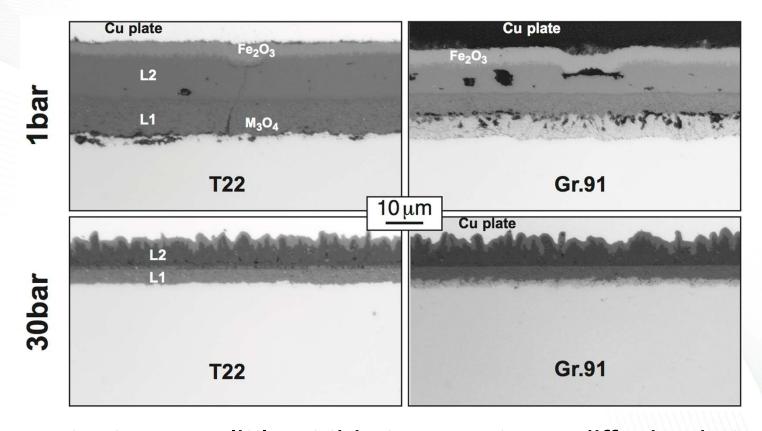
Standard procedure

"Keiser" rig: 500-h cycles, 1-43 bar CO₂

Pressures of 1-43 bar


Autoclave: 275 bar water 500-h cycles

1L volume restricts exposure


High purity Ar-bubbled, filtered water with conductivity <0.1μS and <10 ppb O₂

2017: 550°C, 500 h comparison of 1, 17 and 30 bar

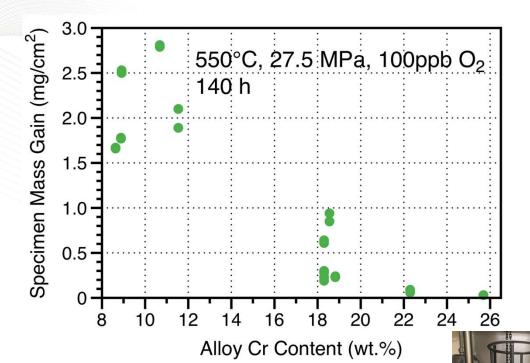
- 1 bar steam in tube: higher mass than Keiser rig
- 1 bar Keiser rig scale spallation for T22
- 17 bar less mass gain than 30 bar (run at different times)

Whoa. I wonder what scale at 275 bar looks like.

Cr content means little at this temperature: diffusion is too slow

Partnering with EPRI to go supercritical (650°C/27.5MPa)

- 1L alloy 625 autoclave
- Temperature up to 650°C
- Pressure to 27.5 MPa (4000 psi)
- Controlled & monitored water chemistry
 - Purified water loop for start
 - <0.06 μ S/cm
 - UV, deionization, gas sparging
 - pH controlled by ammonia addition
 - Novel ammonia and hydrazine injection


Two conditions:

- (1) All volatile treatment (hydrazine)
- (2) Oxygenated treatment (100 ppb O₂)

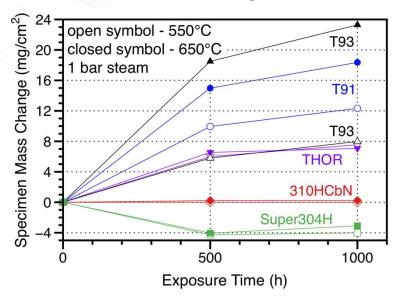
First 500-h cycle aborted after 140 h

Issues resolved with:

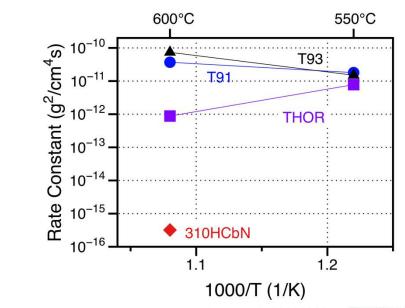
Heater Gasket

Back pressure regulator

Planned test matrix:


	AVT	ОТ
550°C	1,000 h	1,000 h
650°C	1,000 h	1,000 h

All volatile treatment (AVT)
< 10 ppb O₂
Typical for sub-critical
Oxygenated treatment (OT)
50-150 ppb O₂
Typical for super-critical
Oxide to prevent erosion



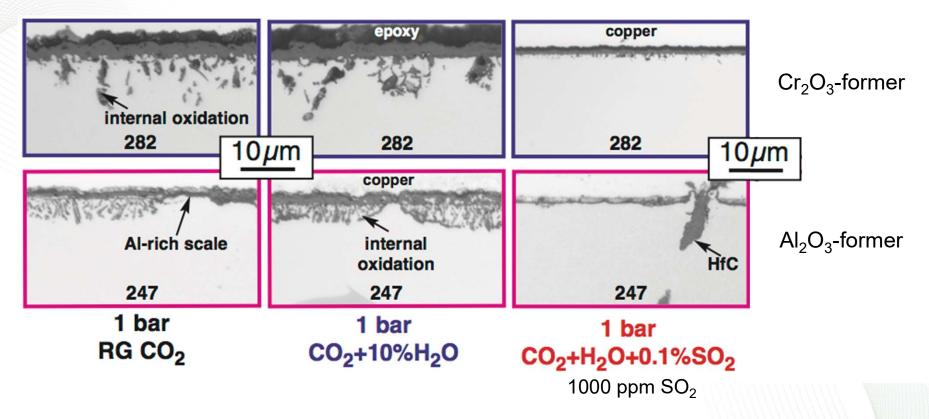
Created baseline 1,000 h exposures in 1 bar steam

Two 500-h cycles

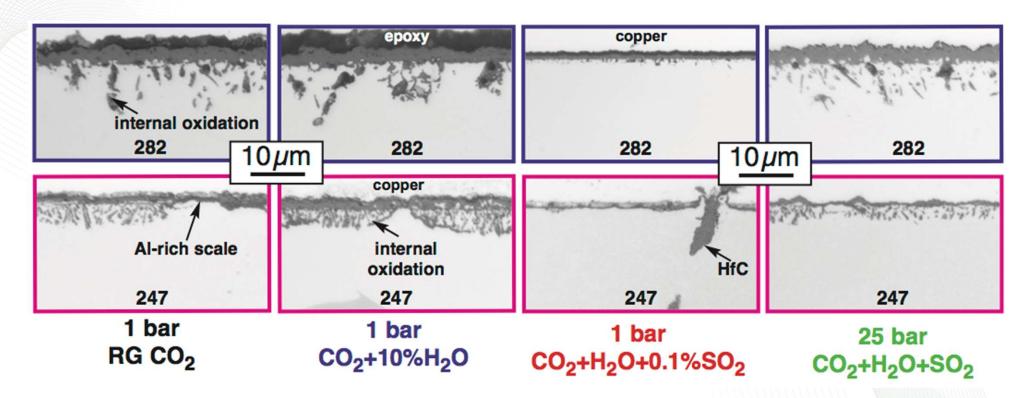
Calculated rates

Corrosion task addressing several issues

- 1. Quantify shot-peening benefit on 304H
 - Completed 15 kh exposures at 600°-650°C
 - Now exposing at 550°C
 - Baseline alloy coupons also being exposed
- 2. SCC issue in current waterwalls
 - Testing completed in controlled water chemistry
 - Next task is in-situ monitoring
- 3. Effect of pressure on steam oxidation
 - Initial comparison: 500 h at 550°C, 1-30 bar
 - New matrix: 1000 h at 550° and 650°C in two water chemistries
- Expecting to complete all tasks in 2018



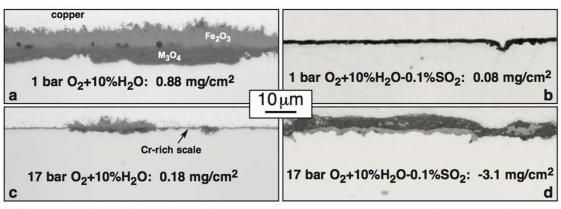
Backup slides



500h at 800°C: SO₂ suppressed internal oxidation at 1 bar

Similar results for SO₂ reported by Young (UNSW) and Quadakkers (Jülich)

500h at 800°C: at 25 bar, 0.1%SO₂ resulted in more attack



Haynes 282: Ni-20Cr-11Co-9Mo-1.6Al-2.2Ti

MarM247 superalloy: Ni-9Cr-10Co-1Mo-6Al-1Ta-3Ta-1.4Hf

Similar observation with 600°C ORNL study for staged pressurized oxy-combustion (SPOC):

No CO₂ in this study

Figure 5: Light microscopy of S30409 specimens exposed at 600°C for 500 h in two environments and two pressures.

O₂-10%H₂O: reduced attack at 17 bar compared to 1 bar 0.1%SO₂ 1 bar: inhibited negative CO₂/H₂O effect (protective scale)

Similar result for Young (CO₂+H₂O) and Quadakkers (H₂O)

0.1%SO₂ 17 bar: sulfidation attack with 17X higher p_{S2}

