Crosscutting Research Review Meeting April 10, 2018 Omni William Penn Hotel, Pittsburgh, PA

<u>Model in the Loop vs. Software in the Loop</u>

Virtual Environment

Hardware in the Loop

<u>Hardware in the Loop</u>

NATIONAL ENERGY TECHNOLOGY LABORATORY

Automobile Simulation Model

$$C = 2 \pi r$$
 Angle $s = \theta r$ θ (rad

Angle
$$\theta$$
 (radians) = (rad)

$$\theta = \frac{s}{r}$$

 $\omega = \frac{v}{r}$

 $a = r \alpha$

Angular Velocity

$$v = \frac{d}{t} = \frac{x}{t} = \frac{\Delta x}{\Delta t}$$

$$\omega = \frac{\Delta \mathcal{B}}{\Delta t} \quad (rad \mid sec)$$

$$v = \frac{dx}{dt}$$

$$\omega = \frac{d \theta}{dt}$$

Acceleration

$$a = \frac{\Delta v}{\Delta t} = \frac{dv}{dt} = \frac{d^2x}{dt^2}$$

$$\frac{a}{r}$$

$$r = \frac{\Delta \omega}{\Delta t} = \frac{d \omega}{dt} = \frac{d^2 \sigma}{dt^2}$$

$$(rad / sec^2)$$

Kinematic Equations

(1)
$$x = x_0 + v_0 t + \frac{1}{2} a t^2$$

$$(2)v = v_0 + at$$

(3)
$$a = const.$$

$$(4)v^2 = v_0^2 + 2a(x - x_0)$$

Angular Acceleration

$$\alpha = \frac{a}{r}$$
 $\alpha' = \frac{\Delta \omega}{\Delta t} = \frac{d \omega}{dt} = \frac{d^2 \theta}{dt^2}$ (rad / sec^2)

Kinematic Equations

(1)
$$\theta = \mathcal{E}_0 + \omega_0 t + \frac{1}{2} \alpha t^2$$

(2)
$$\omega = \omega_0 + \alpha t$$

(3)
$$\alpha = const.$$

$$(4) \omega^2 = \omega_0^2 + 2 \alpha (\mathcal{O} - \mathcal{O}_0)$$

Hardware Under Test

Interface and **Middleware**

Key **Component** Under **Development** (Shock Absorber)

SCADA- Supervisory Control and Data Acquisition

Cyber-Physical Systems

Example: Autonomous Vehicles

Example: Artificial Heart

Example: Smart Grid

NATIONAL ENERGY TECHNOLOGY LABORATORY

The Only Example in Energy

Advanced Power Systems

Achieving the Maximum Efficiency and Flexibility

Bottoming Efficiency (%)

20

10

20

Advanced Power Systems

So What's the Problem?

Technology Development

Technology Development

The Hybrid Performance Project Facility

The Hybrid Performance Project Facility

Accuracy

Flexibility

The Hybrid Performance Project Facility

Lumped vs. Distributed for Controls

Future Opportunities for CPS at NETL

Mitigating Pilot Scale Risk

Replacing Components that Don't Exist...Yet

Geothermal Electric Power Hybrid

Supercritical CO₂ Cycles Taking Advantage of

Gasification Converting Coal to Syngas without a Gasifier

Multivariable Controls Development

Working toward the development of dynamic controls to achieve the highest degree of disturbance rejection

Decentralized Control Optimization

MIMO Control Implementation

Journal of Applied Energy 2016

Multiple Model Adaptive Estimation

ASME Power and Energy 2016

Stigmergy Testing (Biomimetic Control)

A Collaboration with Ames Laboratory

- Stigmergy controller in the MicroNET
 - Used for multivariable agent-based control of Hyper
 - Behavior is confined by state function blocks in the Hyper control system

Stigmergic Control Architecture

First Demonstration of Agent-Based Control on Hardware

On-Line System Identification

Adaptive dynamic control for future and existing power systems flexibility and availability as well as a novel method for component degradation monitoring

Component Degradation during Aging

- In a multivariable environment disturbances due to degradation occur
- Controller parameters must be adaptively tuned
- System remodeling maybe required

Component Aging Emulation

- Cathode airflow and combustion air decrease
- Fuel lean mixture approaching stoichiometric (Eq. ratio 0.43 0.85)
- Fuel valve ringing
- Robust controller, but different operating state

5% Drop!!

Turbine Speed, rpm

On-Line System Identification

0.5% in a Transfer Function Parameter

Turbine speed

2 roots (poles) in the denominator

$$z_1 = 0.898$$
, $z_2 = -0.0116$

1 root (zero) in the numerator

$$z_3 = -0.04$$

On-Line Adaptive Control

2017 Summer at NETL

