FEW0233: Additive Manufacturing of New Structures for Heat Exchange

Crosscutting Research Program Portfolio Review Meeting

April 10, 2018

Joshuah K. Stolaroff Lawrence Livermore National Laboratory

ed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DEwrence Livermore National Security, LLC

- ective: develop a heat exchanger for sCO₂ power cycles with radically roved material efficiency and higher temperature tolerance than current nology.
- **roach:** 3D-printing of nickel alloys in novel gyroid-like geometries.

- e milestone in Phase I:
- int coupons of target alloys.
- etermine the material properties at ambient conditions and 700°C for the alloy upons.
- evelop a model framework for structural and flow properties of designs; identify a orkable design.

ne project combines additive manufacturing of superalloys with new, efficient geometries.

Powder Bed Laser Fusion

Gyroid

Candidate gyroid-like geometries

AKA: Triply Periodic Minimal Surfaces (TPMS)

Surface defined by, e.g.:

Schwarz-P

IWP

Schwarz-D

Expecting order-of-magnitude improvement in heat transfer performance over tubes and flat plates.

From: T. Femmer et al. Chemical Engineering Journal 273 (2015) 438-445.

Hierarchies are common in nature for high interfacial area with low pressure drop

and are now achievable with AM.

Prototypes printed in polycarbonate, ABS, and nylon

Original proof of concept printed in stainless steel

Five alloys considered, Inconel 625 most developed.

Alloy	Powder available	Printed in literature	Powder obtained	Coupons printed by LLNL/partners	Reactor printed by LLNL
el 625	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
es 282	\checkmark	\checkmark	\checkmark	\checkmark	
el 617	\checkmark	\checkmark	\checkmark		
es230	\checkmark	\checkmark			
el 740H	\checkmark				

Vendor data shows good strength from printed Haynes 282

				70 L
X-Direction	Yield Strength (ksi)	Tensile Strength (ksi)	Modulus of Elasticity (Mpsi)	
1	99	144	24.7	
2	98	142	23.0	
3	97	142	23.6	
4	98	142	24.5	č.
5	100	145	22.9	
6	97	141	24.5	
Average	98.2	142.7	23.9	
 MDS	?	?	?	

M15-A & NOTE 4. nation f2971-13 Tensile Bar SUPPORTS TO BE ADDED TO THIS SURFACE FOR VERTICAL SPECIMENS WHEN ORIENTED IN THE ZX. VERTICAL WALL SEPARATION IS TO BE 0.5 mm.

Z-Direction	Yield Strength (ksi)	Tensile Strength (ksi)	Modulus of Elasticity (Mpsi)	%1
1	83	121	20.9	
2	82	119	19.6	
3	82	120	19.6	
4	82	120	19.5	
5	84	120	19.4	
6	83	120	19.9	
Average	82.7	120.0	19.8	
MDS	?	?	?	

Test cylinders being printed.

Data from i3D MFG

Test cylinders printed in Inconel 625

Nearly full density achieved at several spacings

Reactor and test blocks in Inconel 625

Schwarz-D geometry meshed in StarCCM

Fluid 1

Heat exchange model test case

Computational domain: 4 repeat Units (4cm long)

- Extrusions provide st flow at boundaries.
- Water as liquid phase
- Aluminum as solid p

- 11.6M Cells,
- ~150 um resolutio
- Convergence in 15 iterations after 80 core

Flow characteristics

Temperature in Fluid 2 (flow direction)

U = 0.01 m/s, *Re* = 87, *Pe* = 521

Stable temperature profiles developed

Axially Averaged Temperature Variation

Temperature in Fluid 2 (flow direction)

Heat transfer coefficient varies with position and flow rate

 $\frac{q_{j \to W,i}}{\langle T_j \rangle - \langle T_{W,i} \rangle}$

eat transfer coefficient: heat rred normalized by surface area and ature difference

Comparing Heat Transfer Correlations

shows higher Nu, and stronger dependence on Re.

y due to smaller channels (1mm) and different, dependent on Nu formulation.

¹Femmer et al. 2015

Coupled heat transfer and solid mechanics modeled in Comso

rm heating 300 \rightarrow 1000 K tational domain size = 2 x 2 x 2 cm ickness = 0.85 mm

Material is Inconel 625 (properties from literature)

 \Rightarrow von Mises stresses are negligible for uniform heating

Thermal stress during heat exchange is manageable.

 $T_{hot} = 1000K, T_{cold} = 300K, h = 1570 W/(m^2-K)$

Solid temperature varies between 500 K to 800 K

von Mises stress concentration is about 120 (yield strength for printed Inconel 625 is ~40)

Summary

- Printed TPMS heat exchangers remain a very promising concept for sCO₂ power cycles.
- Feasibility of fabrication is confirmed in-house and through literature and commercial vendors
- Superior heat exchange performance is supported in early modeling.

Phase II

- sks in two tracks:
- Refine design through computational optimization
- est additional alloys and select

pjective: demonstrate a prototype heat exchanger at 750°C and 300 r ΔP with superior performance to a microchannel design.

Acknowledgements

Program manager: Regis Conrad

Team members:

Philip Depond Victor Beck Pratanu Roy Omer Dogan (NETL) Du Nguyen

Lawrence Livermore National Laboratory

Contact: stolaroff1@llnl.gov