Event Modeling Risk Assessment using Linked Diagrams (EMRALD)

Steven Prescott – INL P.O. Box 1625, Idaho Falls, ID Steven.Prescott@inl.gov

April 2018 TCF-17-13580 Oct 2017 – Sept 2018

EMRALD Goals and Objectives

Probabilistically determine the who, how, why and when, of events leading to your system failures by simulating real world conditions.

Existing Capabilities

- Solve engine
- Specialized coupling 1-way and 2-way (with flooding simulation Neutrino)
- Demonstrations of nuclear power plant scenarios

Potential for multiple industries

- Electric grid
- Hydro
- Oil and gas

What is needed (TCF work)

- Generic Communication Protocol & API [Feb 29, March 31]
- Web based User Interface (UI) [April 31]
- Test cases [July 31]
- Beta release [Sept 31]

1.200E-05

What is Probabilistic Risk Assessment (PRA)

Traditional PRA properties

Basic events, fault trees, event trees

Core Damage due to Major

- Failure probabilities
- Fast calculations
- Static models

Seismic Initiator (0.3-0.5g)

No time aspect

(SAPHIRE developed at INL)

CHARGING SYSTEM FAILURES

Dynamic PRA

Properties

- Simulation based
- Captures feedback
- Cascade of events in time
- Couple with other simulation
- State based models
- Higher computation costs (Slower)

Why EMRALD

- 1. Combine modeling methods (existing and new PRA modelers)
- 2. Industry use focus for UI vs. scientific research


```
<pre
```


Why EMRALD (cont.)

3. Evaluate existing design models & tools in operating conditions!

EMRALD Modeling - States

Types

- Start Initiating state for a diagram.
- Standard a normal state representing no special conditions.
- Key State marks a state of interest, to be tracked.
- Terminal ends the simulation run.

Immediate Actions Section – Actions taken when a new state is entered.

State		
Actions		
Transition		
Change Variable		
Run Script		
Events		
Failure Rate Sampling		
Timer		
State Change		
Logic Tree		
Evaluate Variable		
External Event		

Event Actions – Events to look for when in this state and what action to take if the event is triggered. (Time or Condition)

EMRALD Modeling - Diagrams

Components

- Failure rates
- Status
- Operator actions

Systems

- Component interaction
- Evaluate logic trees

EMRALD Modeling - Diagrams

Plant Response

- Overall Operation
- Key States
- Mission Time
- Termination

Incorporating Other Simulations

- One or Two way coupling
- Modify external simulation through actions
- Monitor external changes through events

EMRALD Simulation

Based on a three-phased discrete event simulation.

To begin, add initial start states to Current and New States List.

- 1. While there are States in the New Sates list, For each State :
 - Add the Events to the Time Queue or Conditional List.
 - Execute any Immediate Actions
- 2. If any Conditional Events criteria is met.
 - Execute that events action/s.
 - (Go to Step 1)
- 3. Jump to the next chronological event.
 - Process that event's actions.
 - (Go to Step 1)

EMRALD Solve Engine & Results

Features

- Decoupled from modeling UI
- Command line or UI
- Monitor progress
- Monitor coupled communication

Results include timing and events for component failures.

Need to develop visualization for clustering failure contributors.

Current Applications

- 1. External flooding
- 2. Multi hazard evaluation (seismic, internal flooding, thermal hydraulics)
- 3. Operator procedures with fire simulation (preliminary work)

TCF Task - Coupling Protocol

Platform – XMPP (originally Jabber)

- Message-oriented middleware based on XML
- Near real-time
- Cross-Platform, Cross-Network
- Numerous language packages
- Open source

Message Protocol

- JSON JavaScript Object Notation
- Open & expandable
- Schema validation

Status

- Example packages
- Beta ready


```
"dispName": "SetFlow",
"version": "0.1.0",
"pID": "f028d34e-2111-4857-a911-11d83f8e343f",
"msgType": "mtSimAction",
"globalRunTime": "00:00:00",
"desc": "Adjusting the Flow",
"simAction": {
    "itemData": {
        "nameId": "Flow",
        "value": "300"
    },
    "actType": "atCompModify",
    "time": "01:05:00"
}
```


TCF Task - User Interface

Interface

- Web based
- Open Source Packages
- Customizable

Status

~80%

Current Commercialization Work

Small Business Innovation Research (SBIR)

• 3 requests

Grid Reliability

- Investigating a combined proposal with University of Idaho, Siemens.
- Funding Opportunity Announcement (FOA)

Coupling features

- XMPP cross platform, open JSON protocol
- Time Step simulations
- Other discrete event simulations
- Formula Solvers
- Static Input Deck

Input Deck		
Event	Time	
Power Failure Battery Exhausted	3:36.40 4:50.22	

