Treating Effluent Streams at Coal Power Plants Using Membranes

Nicholas Siefert, Ph.D., P.E.

Technical Portfolio Lead: Water Management at Power Systems NETL/RIC's Innovative Energy & Water Processes Team

Meagan Mauter, Ph.D, and Timothy Bartholomew ORISE & Carnegie Mellon University

2015 EPA Regulation on Effluent Limitations

NATIONAL ENERGY TECHNOLOGY LABORATORY

ELGs at Coal Power Plants

- September 30, 2015, finalized a rule revising the regulations for the <u>Steam Electric Power Generating</u> Effluent Guidelines
- Streams effected include:
 - Fly & Bottom Ash Transport Waters
 - Flue Gas Desulfurization (FGD) effluent
 - Ash Pond effluent
 - Flue Gas Mercury Control Water
- 6 regulated heavy metals (Pb, As, Hg, Se, Cr, Cd)
- Compliance Costs are expected by the EPA to be on the order of \$500M/yr across the entire U.S. fleet
- September 18, 2017 EPA announced a Postponement of Certain Compliance Dates (does not affect compliance dates for Mercury Control Water and Fly Ash Transport Water)
- Two Options for Compliance Zero Liquid Discharge (ZLD) Chemical & Biological Treatment

Standard Option for ZLD

Start of the Art Technologies used in ZLD

Reserve Osmosis (RO)

• Pros

- High Efficiency (30%-50%)
- Low upfront capital investment

Cons

- Only can concentrate brines up to 6-8 wt% of TDS
- Highly susceptible to scaling and fouling

Start of the Art Technologies used in ZLD

Mechanical Vapor Recompression (MVR)

• Pros

• Can concentrate brines up to 20 -25 wt% of TDS

Cons

- Not particularly scalable or flexible
- Low efficiency (<10%) and high levelized costs to treat

Grand Challenge for Concentrating Effluent Streams

Grand Challenge for Concentrating Effluent Streams

Dewatering Processes

Reverse Osmosis

Forward Osmosis w/ NH₃:CO₂ Draw

- Ability to dewater high salinity brines
- •Electricity driven process
- Minimal chemical handling

Osmotically Assisted Reverse Osmosis

Mechanical Vapor Compression

Membrane Distillation

Osmotically Assisted Reverse Osmosis

Osmotically Assisted Reverse Osmosis (OARO) differs from conventional membrane processes

Reverse Osmosis

Osmotically Assisted Reverse Osmosis

Process Configuration

Test System at NETL

OARO Process Simulation

ERD = Energy Recovery Device Pressure Recovery assuming between 90% - 96% efficiency

Comparison of Energy Demand

OARO has the Potential for 50% Savings in Electrical Energy

Energy consumption of RO, MVC/MVR, OARO water treatment and theoretical minimum work with respect to feed TDS concentration and recovery

Techno-Economic Analysis: Base Case

Cost optimal unit water costs (A) and normalized component costs (B) for the three high salinity brine desalination cases: Case 1: 75 g/L TDS with 50% recovery, Case 2: 75 g/L TDS with 70% recovery, and Case 3: 125 g/L with 40% recovery

Optimization within the Base Cases

Cost optimal design configurations and associated performance metrics for OARO/RO membrane-based desalination processes: A) number of stages, B) unit water costs, C) energy use. The three high-salinity brine desalination cases are denoted with a red box.

OARO cost sensitivity

OARO cost sensitivity for A) water permeability coefficient, A; B) structural parameter, S; C) membrane unit cost.

The baseline value used in modeling each of the cases is marked with an asterisk.

Conclusions & Future Work

- OARO is a membrane process capable of concentrating effluent streams to high salinity
- Electrical energy cost of OARO is <50% of the electrical energy consumption of Mechanical Vapor Recompression (MVR)
- Preliminary Techno-Economic Analysis show modest cost savings compared with MVR using the Base Case assumptions
- Sensitivity Analysis shows the requirements for the structural parameter and the membrane cost that would allow for a 50% cost savings compared with MVR

Acknowledgements

- NETL Technical Support Staff
 - Rich Valdisera
 - John Midla
 - Bill Stile
 - Rocky Stoneking
 - John O'Connor
 - Mike Ciocco
 - Jeff Hash
 - Kevin Resnik
- NETL Project Management
 - Jessica Mullen
 - Barbara Carney
 - Karol Schrems
 - Pat Rawls
 - Briggs White

- DOE/HQ
 - Robie Lewis
 - Regis Conrad
- R&IC
 - Dave Alman
 - Randy Gemmen
 - David Berry
 - Madison Wenzlick
 - Alexandra Hakala
 - Christina Lopano
 - Jason Arena
 - Tim Bartholomew
 - Megan Mauter

Questions?

