

Real-Time 3-D Volume Imaging and Mass-Gauging of High Temperature Flows and Power System Components in a Fossil Fuel Reactor Using Electrical Capacitance Volume Tomography

Project Investigator: Tech4Imaging LLC, 1910 Crown Park ct., Columbus OH 43235

PI: Qussai Marashdeh, marashdeh@tech4imaging.com

Meeting: Crosscutting Meeting 2018

Date: 04/10/2018

DOE award #: DE-SC0010228

Period of Performance: July 2017-July 2019

Subcontractors: The Ohio State University

Project Goals & Objectives

 The main technical objective of Phase II is to develop a functional Gas-Liquid ECVT demonstration system for real-time imaging and measurement of multiphase flows at high temperature.

Year 1 Milestones:

- 1. Finalize AECVT sensor designend of 2nd quarter.
- 2. Fabricate sensor for gas-liquid applications at for high pressure/temperature applications-end of 3rd quarter.
- 3. Fabrication of testing chamberend of 4th quarter.

Year 2 Milestones:

- 1. Development of reconstruction and feature extraction algorithms- end of 7th quarter.
- 2. Develop and demonstrate software and GUIend of 8th quarter.
- 3. Demonstrate integrated system- end of 8th quarter.

Presentation Outline

- Introduction to ECVT
- Electronic Design
- Sensor
- Software
- Testing
- Schedule

IMAGING Electrical Capacitive Volume Tomography

- ❖ Electrical Capacitance Volume Tomography (ECVT) is a low cost noninvasive imaging technique to find the volumetric dielectric distribution from inter-electrode capacitance measurements.
- ❖ Electrodes respond differently to the change in permittivity distribution inside the sensing domain. These mutual capacitances are used to reconstruct the dielectric distribution in the sensing domain.
- ❖ECVT is used in nondestructive testing, imaging of multiphase flows and for imaging of combustion flames and fluidized beds.

ECVT Sensor Model

The inter electrode capacitance is computed by

$$C = -\frac{1}{V} \iint_{\Gamma} \varepsilon(x, y) \nabla \phi(x, y) \cdot ndS.$$

The first order linear approximation $\Delta C = \frac{d\xi}{d\varepsilon} (\Delta \epsilon) + O((\Delta \epsilon)^2)$

$$\mathbf{C}_{\mathbf{M}\times\mathbf{1}}=\mathbf{S}_{\mathbf{M}\times\mathbf{N}}\mathbf{G}_{\mathbf{N}\times\mathbf{1},}$$

Where $M = \frac{n(n-1)}{2}$ are the number of independent sensor measurements, N is the number of pixels in the sensing domain and the sensitivity matrix S is defined as

$$S_{ij}[n] = \frac{1}{V_i V_j} \int_{v[n]} \nabla \varphi_i \cdot \nabla \varphi_j dv$$

Overview

- Year of 2017 and 2018 to date
- Data Acquisition System (DAS)
- Firmware
- Sensor Design
- Software
- Algorithms

Data Acquisition System

- Eliminated ghost images in conductive phases
- 2. Industrial grade enclosure
- 3. Reducing temperature drift

Channel Selection

- Activate only certain plate pairs during collection
- Increased acquisition speed due to less data

Dual Frequency

MWS Effect
 3 Phase
 DCPT Resolution

Robust Electrodes

- Simple Conductive Plates
- Electrically Insulative Coating
- Smooth/Laminar Design
- Robust against
 - Heat
 - Pressure
 - Abrasion
 - Corrosion

FIGURE 2g

Minimal Maintenance

- Low Maintenance Parts
 - Non-mechanical
 - Field Removable
 - Field Replaceable
- Minimal Calibration Requirements

Remote Diagnostics

Installation

- Inline
- Standard Flanges
- Matching ID
- Metal Outer Jacket
- Minimal Space Requirement

Modularity

- Easily modified for various applications
- Exchange plastics, ceramics, and metals for electrode components.

- Adjust based on
 - Temp
 - Press
 - Material in flow
 - Longevity
 - Cost

Software

Firmware Integration

- Dual Frequency
- Channel Selection

Distribution

- Licensing Structure
- Demo License

Imaging

- Image Reconstruction
- Velocimetry

<u>Data</u>

- Normalization
- Calibration

Algorithms

- 1. Three Phase Decomposition
- 2. Air-water systems
- Velocimetry

 0.25

 0.2

 0.15

 0.10

 0.05
- 3. MWS DCPT
- 4. Velocimetry

Three Phase Decomposition

- AirOilWater

Volume Fraction for Air Water Systems

Increased Imaging Resolution for Air-Water Systems

Velocimetry

Phase II B Schedule

<u>Task 1</u>: Sensor Material Research & Investigation

<u>Task 2</u>: *ECVT sensor mechanical design for high temperatures*

<u>Task 3</u>: *ECVT sensor fabrication*

<u>Task 4</u>: Build test chamber

<u>Task 5</u>: Data Acquisition System (DAS) firmware and electronic design

Task 6: Testing

<u>Task 7</u>: *Implement image reconstruction algorithm*

<u>Task 8</u>: *Develop feature extraction*

<u>Task 9</u>: *System integration and testing in real-time*

<u>Task 10</u>: *Software interface*

<u>Task 11</u>: Finalize demonstration unit

Tasks			er)					
	1	2	3	4	5	6	7	8
Task 1								
Task 2								
Task 3								
Task 4								
Task 5								
Task 6								
Task 7								
Task 8								
Task 9								
Task 10								
Task 11								

Conclusion

- ECVT for harsh condition gas-liquid applications is under development.
- DAS will be able to operate in Dev 1 environment.
- Advanced feature extraction is under development:
 - Dual frequency
 - MWS-DCPT
 - New normalization
 - Velocimetry
- Software GUI is operational.

Qussai Marashdeh, PhD CEO and Founder marashdeh@tech4imaging.com Tech4Imaging, LLC 1910 Crown Park Ct. Columbus, OH 43235