Oil & Natural Gas Technology

DOE Award No.: DE- FE0013961

Quarterly Research Performance Progress Report (Period ending 3/31/2015)

Borehole Tool for the Comprehensive Characterization of Hydrate-Bearing Sediments

Project Period (10/1/2013 to 9/30/2016)

Submitted by: J. Carlos Santamarina

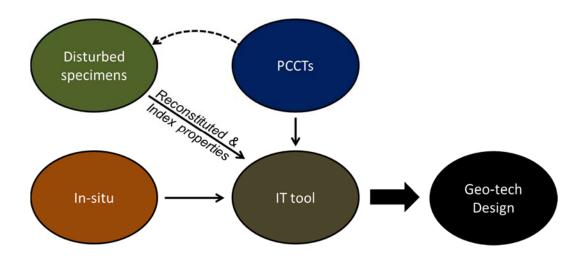
Cantamania

Georgia Institute of Technology DUNS #: 097394084 505 10th street Atlanta , GA 30332 e-mail: jcs@gatech.edu

Phone number: (404) 894-7605

Prepared for: United States Department of Energy National Energy Technology Laboratory

Submission date: 4/30/2015


Office of Fossil Energy

DISCLAIMER:

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

ACCOMPLISHMENTS

Context – Goals. The determination of physical properties for hydrate bearing sediments relies on correlations with geophysical measurements, and experimental data gathered on conventional and pressure cores; however, there are intrinsic uncertainty in correlations, inherent sampling disturbance, and testing difficulties when hydrate bearing sediments are involved. This research focuses on the development of a robust borehole tool for the comprehensive characterization of hydrate bearing sediments in-situ, complemented with an IT tool for the selection of appropriate material parameters.

Accomplishments

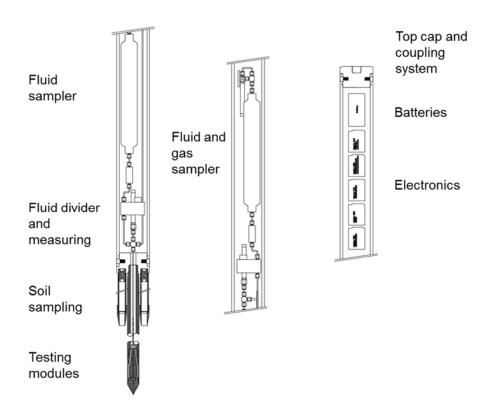
The main accomplishments for this period include:

- IT tool (sub-task 2.1: Update database of hydrate-bearing sediment properties)
 - Model prediction
- Borehole tool design: body (sub-task 3.3: Design)
 - o Body design for testing and deployment
- Borehole tool (sub-task 4.2: Design)
 - o Camera module
- Borehole tool (sub-task 5.3: Deployment collaborator)
 - o Design for Red Sea deployment tests

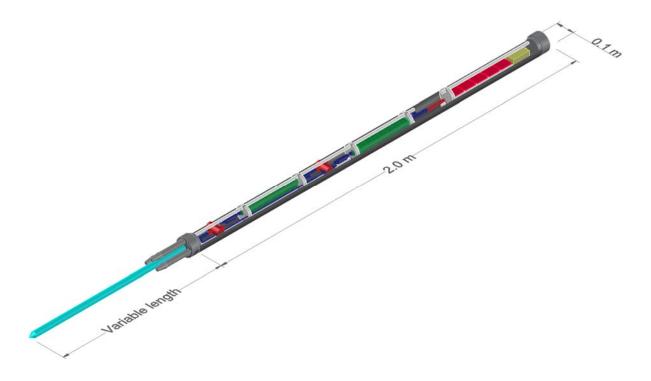
Plan - Next reporting period

Improve the interface and database management system, and finish user's manual. Tentative deployment at incremental depths in the Red Sea.

Research in Progress


Borehole Tool

The in-situ tool consists on: a train of modules, samplers (solids and fluids), a body and the reaction system. The train of modules were machined in SS316 for its high corrosion and stress resistance. Penetration is based on the weight of the drilling rods (either actively pushing or passive reaction).


Body design

The body is a cylindrical cavity (SS316) of 2 meters in length and 10 cm (4") wide, with two rigid caps. The body houses the electronics, tubing and other peripherals; also supports the train of modules and samplers on the lower cap. The top cap is able to couple with any available reaction system.

Figure 1 shows a sketch of the body design and available instrumentation, tubing and fluid sampling location. Figure 2 is an extruded version of the complete tool. The train of in-line modules and soil samplers are shown in cyan and dark grey at the bottom. The reaction system latches at the top. The hydraulic system (blue and green), electronics (red) and batteries (yellow) are housed inside the body. An internal plastic frame holds the hydraulic system and electronics in place during operation (white on Figure 2).

Figure 1: Body sketch and components

Figure 2: Body: extruded sketch. Cyan: module train; dark grey: soil samplers; red: electronics; yellow: batteries; blue: tubing system and green: fluid sampling storage.

Camera module

A module is specially designed to house an Arduino-compatible camera. This module can be coupled in series with any other module. Figure 3 shows the general design of the video-module. It consists of two pieces in series, the cavity to house the camera and a sapphire window that is rated for the operation pressure. LED lights will also be located close to the window to provide the necessary illumination. The cavity is large and allows for tubing and cables to pass through without disturbing the camera. Full 3D stress analyses verified the design (Figure 3).

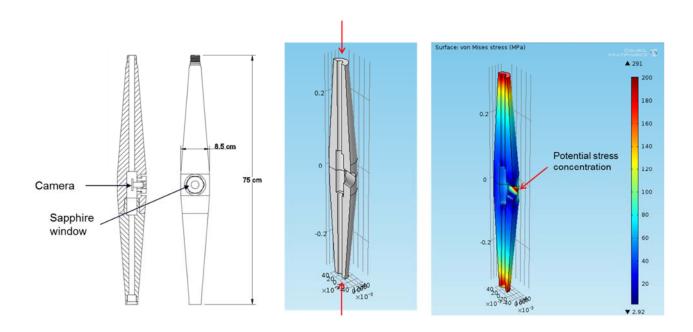
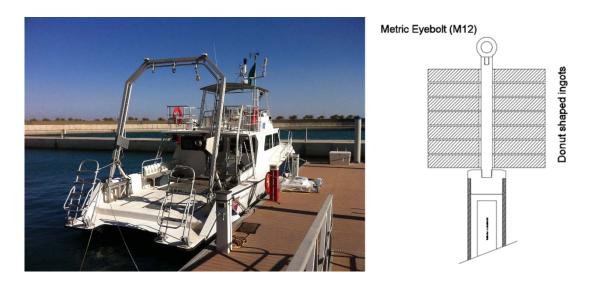
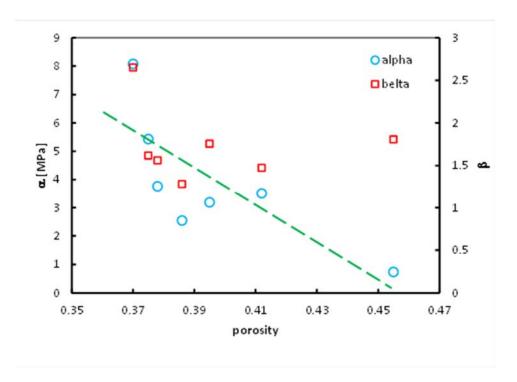



Figure 3: Camera module: general design and stress verification.

Deployment collaboration

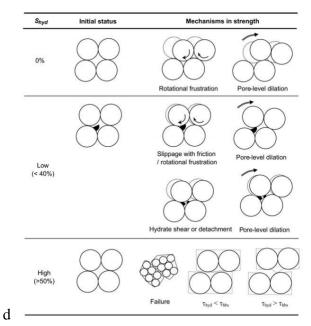
Close relationship has been developed with the Red Sea Research Center (KAUST, Saudi Arabia) to run the first series of tests on near-surface sediments at different water depths in the Red Sea. A coupler was designed to link with the Research Center's vessel and lifting system (Figure 4-a and -b). It involves ingots in series with a guiding rod.

Figure 4: Collaboration with Red Sea Center, a) Research vessel; b) Dead weight coupled to the tool for near-surface sediment tests.


IT Tool

Model parameters and properties based on the IT tool

The database includes physical properties of a wide range of sediments, and it allow us to identify links among index parameters and sediment properties. Consider the shear strength of hydrate-bearing sediments. The shear strength of hydrate-bearing sediments is well captured by the following model:


$$q_f = \frac{\cos \varphi'}{1 - \sin \varphi'} c' + \frac{\sin \varphi'}{1 - \sin \varphi'} \sigma_3' + \alpha S_h^{\beta}$$

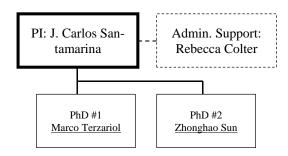
The regression analysis shows that the α -factor is inversely related to porosity (figure 5), while the β -exponent is \sim 1.5.

Figure 5. Inverse relationship between α -factor and porosity.

These values reflect grain-scale mechanisms in hydrate-bearing sediments. For example, hydrates formed in pores hinder grain rotation or slippage of adjacent particles (Figure 6). This mechanism is related to coordination number; in turn, coordination number evolves with porosity. For example, the simple cubic packing of mono-sized spherical particles has porosity 0.476 and coordination number of 6, while face-centered cubic packing and tetrahedral packing have porosity 0.26 and coordination number 12.

Figure 6. Possible particle-level mechanisms involved in the shear strength of hydrate-bearing sediments at various hydrate saturations [Yun, T. S., Santamarina, J. C., & Ruppel, C. (2007). Mechanical properties of sand, silt, and clay containing tetrahydrofuran hydrate. Journal of Geophysical Research: Solid Earth (1978–2012), 112(B4)p

MILESTONE LOG


	Milestone	Completion Date	Comments
Title	Completion PMP		
Planned Date	November 2013	11/2013	
Verification method	Report		
Title	Insertion – Tool design		
Planned Date	September 2014	9/2014	
Verification method	Report		
Title	Database and IT tool		
Planned Date	September 2014	9/2014	Paper in preparation
Verification method	Report		
Title	Electronics in operation		
Planned Date	January 2015	In progress	
Verification method	Report		
Title	Lab testing of prototype		
Planned Date	September 2015	In progress	
Verification method	Report		
Title	Tool deployment		
Planned Date	Before September 2016		
Verification method	Report		

PRODUCTS

- **Publications Presentations:** None at this point
- **Website:** Publications and key presentations are included in http://pmrl.ce.gatech.edu/. (for academic purposes only)
- Technologies or techniques: None at this point.
- Inventions, patent applications, and/or licenses: None at this point.
- Other products: None at this point.

PARTICIPANTS & OTHER COLLABORATING ORGANIZATIONS

Research Team: The current team is shown next. We anticipate including external collaborators as the project advances

IMPACT

None at this point.

CHANGES/PROBLEMS:

None at this point.

SPECIAL REPORTING REQUIREMENTS:

We are progressing towards all goals for this project.

BUDGETARY INFORMATION:

As of the end of this research period, expenditures are summarized in the following table (Note: in our academic cycle, higher expenditures typically take place during the summer quarter):

				Budget Period 1	riod 1							Budget	Budget Period 2			
	5	Q1	J	Q2	J	Q3	Q4	14	J	Q1	σ	Q2	Q3	(3	Q4	1
Baseline Reporting Quarter DE-FE0013961	10/1/13 -	10/1/13 - 12/31/13	1/1/14 -	1/1/14 - 3/31/14	4/1/14 -	4/1/14 - 6/30/14	7/1/14 -	7/1/14 - 9/30/14	10/1/14-	10/1/14 - 12/31/14	1/1/15-	1/1/15 - 3/31/15	4/1/15 - (4/1/15 - 6/30/15	7/1/15 - 9/30/15	9/30/15
	Q1	Cumulative Total	Q2	Cumulative Total	03	Cumulative Total	φ	Cumulative Total	100	Cumulative Total	0,2	Cumulative Total	60	Cumulative Total	Q4	Cumulative Total
Baseline Cost Plan																
Federal Share	34,736	34,736	34,736	69,472	34,736	104,208	34,736	138,944	30,000	168,944	30,000	198,944	30,000	228,944	86,571	315,515
Non-Federal Share	13,326	13,326	13,327	26,653	13,327	086'68		39,980	10,495	50,475	10,495	60,970	10,495	71,465	10,945	82,410
Total Planned	48,062	48,062	48,063	96,125	48,063	144,188	34,736	178,924	40,495	219,419	40,495	259,914	40,495	300,409	97,516	397,925
Actual Incurred Cost																
Federal Share	-	1	20,865	20,865	45,109	62,973	55,929	121,902	64,746	186,648	38,605	225,253		225,253		225,253
Non-Federal Share	-	-		-	39,980	39,980	-	39,980	10,601	50,580	27,525	78,105		78,105		78,105
Total Incurred Costs	-	-	20,865	20,865	82,089	105,953	55,929	161,881	75,347	237,228	66,130	303,358	-	303,358	-	303,358
Variance																
Federal Share	-34,736	-34,736	-13,871	-48,607	10,373	-38,235	21,193	-17,042	34,746	17,704	8,605	26,309				
Non-Federal Share	-13,326	-13,326	-13,327	-26,653	26,653	0	0	0	106	105	17,030	17,135				
Total Variance	-48,062	-48,062	-27,198	-75,260	37,026	-38,235	21,193	-17,043	34,852	17,809	25,635	43,444				

National Energy Technology Laboratory

626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940

3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880

13131 Dairy Ashford Road, Suite 225 Sugar Land, TX 77478

1450 Queen Avenue SW Albany, OR 97321-2198

Arctic Energy Office 420 L Street, Suite 305 Anchorage, AK 99501

Visit the NETL website at: www.netl.doe.gov

Customer Service Line: 1-800-553-7681

