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�PART A
BOAST TECHNICAL DESCRIPTION


INTRODUCTION

Computer programs are an integral part of a modern petroleum engineering effort.  These programs are time-saving tools for performing evaluation and design work.  Probably the most routinely used of the technically sophisticated programs is the black oil simulator.  The black oil simulator is the workhorse of modern reservoir engineering in particular, yet it is generally accessible only for a substantial and often prohibitive fee.  This report provides technical information about a newly developed three-dimensional, three-phase black oil simulator.  The documentation includes the code for the black oil applied simulation tool (BOAST), and is presented such that it can be readily used by the public.  BOAST was developed primarily for support of Department of Energy (DOE) contract number DE-AC19-80-BC10033.  The simulator is a substantially upgraded version of the publicly available but incomplete simulator developed by Sawyer and Mercer (1978).

These volumes provide a discussion of the methods used and show how to implement them in the development of a useful engineering tool.  Volume I contains a detailed discussion of the methods used in deriving the flow equations, converting them to finite difference form, solving the subsequent linear algebraic systems, and evaluating the results.  Volume II is designed to function as an easy-to-use program user's manual.

The implementation aspect of these volumes helps to fill a gap in the existing reservoir simulation literature.  Many of the program subroutines are suitable for use in other programs.  This is especially true for the solution method subroutines.

BOAST is designed to be an easy-to-use program which would be suited to simulation of primary depletion, pressure maintenance by water and/or gas injection, and basic secondary recovery operations (such as waterflooding) in a black-oil reservoir.  Unlike commercially available simulators, which may have a confusing array of formulation and solution options to cover a wider range of special applications problems such as coning, BOAST contains only an IMPES formulation with direct elimination (BAND and D4) and LSOR solution options.  As such, the program can be used to evaluate many of the common field production situations encountered in actual practice and, when properly applied (see discussion of Program Uses for limitations of the IMPES formulation), it should be competitive with, if not faster than, commercially available simulators because BOAST is not encumbered by the myriad of seldom-used options available in most commercial simulators.

The documentation procedure we have adopted will present in detail what BOAST is actually doing.  This makes it possible to avoid misinterpreting what a commercial "black box" simulator is doing for those authorized to apply the simulator but not allowed access to the simulator's code.  If the versatility of a commercial simulator is needed, then BOAST can function as an inexpensive tool for performing preliminary or complementary history matching and performance prediction work.


�2.	DERIVATION OF THE FLOW EQUATIONS


Many derivations of the oil, water, and gas fluid flow equations exist in the literature, e.g. Crichlow (1977) and Peaceman (1977).  Consequently, only a brief discussion will be presented here.


Conservation of Mass

We begin by considering the flow of fluid into and out of a single reservoir block (Figure 2.1). Assume fluid flows into the block at x (Jx) and out of the block at x + (x (Jx + (x).  J denotes the fluid flux and is defined as the rate of flow of mass per unit cross-sectional area normal to the direction of flow, which is the x-direction in the present case.  By conservation of mass, we have the equality:

	mass entering the block - mass leaving the block
	= accumulation of mass in the block.

If the block has length (x, width (y, and depth (z, then we can write the mass entering the block in a time interval (t as


[(Jx)x(y(z+(Jy)y(x(z+(Jz)z(x(y] (t  =  Mass in	2.1

where we have generalized to allow flux in the y and z directions as well.  The notation (Jx)x denotes the x-direction flux at location x, with analogous meanings for the remaining terms.


Figure 2.1.
Reservoir block:  the coordinate convention follows Sawyer and Mercer (1978).
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Corresponding to mass entering is a term for mass exiting which has the form

[(Jx)x+(x (y(z  +  (Jy)y+(y (x(z  +  (Jz)z+(z (x(y] (t   	2.2

+  q(x(y(z(t  =  Mass out

where we have added a source/sink term q which represents mass flow into (source) or out of (sink) a well.  A producer is represented by q > 0, and an injector by q < 0.

Accumulation of mass in the block is the change in concentration of phase p � EMBED Equation.2  ��� in the block over the time interval (t.  If the concentration � EMBED Equation.2  ��� is defined as the total mass of phase p (oil, water, or gas) in the entire reservoir block divided by the block volume, then the accumulation term becomes

[(Cp)t+(t  -  (Cp)t] (x(y(z	2.3

Using Equations (2.1) through (2.3) in the mass conservation equality

	Mass in  -  Mass out  =  Mass accumulation

gives
	[(Jx)x (y(z	+	(Jy)y (x(z	+	(Jz)z (x(y] (t

	-	[(Jx)x+(x(y(z	+	(Jy)y+(y(x(z	(Jz)z+(z (x(y] (t	-	q(x(y(z(t

	=	[(Cp)t+(t	-	(Cp)t] (x(y(z	2.4


Dividing Equation (2.4) by (x (y (z (t and rearranging gives

	� EMBED Equation.2  ���	2.5

In the limit as (x, (y, (z and (t go to zero Equation (2.5) becomes the continuity equation

	� EMBED Equation.2  ���	2.6

The oil, water, and gas phases each satisfy a mass conservation equation having the form of Equation (2.6).


Flow Equations For Three-Phase Flow

The flow equations for an oil, water, and gas system are determined by specifying the fluxes and concentrations of the conservation equations for each of the three phases.  A flux in a given direction can be written as the density of the fluid times its velocity in the given direction.  Letting the subscripts o, w, and g denote oil, water, and gas, respectively, the fluxes become:

	� EMBED Equation.2  ���	2.7

	� EMBED Equation.2  ���	2.8

	� EMBED Equation.2  ���	2.9

where Rso and Rsw are gas solubilities in SCF/STB, Bo, Bw, and Bg are formation  volume factors in units of reservoir volume/standard volume, the subscripts sc denote standard conditions (usually 60ºF and 14.7 psia), and ( denotes fluid densities.  The velocities � EMBED Equation.2  ��� are assumed to be Darcy velocities and their x-components are

	� EMBED Equation.2  ���* 	2.10

	� EMBED Equation.2  ���	2.11

	� EMBED Equation.2  ���	2.12

where g is the acceleration of gravity in ft/sec2 , and gc is 32.174 ft/sec2  (BOAST assumes �g = gc).

The phase mobility (p is defined as the ratio of the relative permeability to flow of the phase divided by its viscosity, thus

	(p  =  krp  /  (p	2.13

The phase densities are related to formation volume factors and gas solubilities by

	� EMBED Equation.2  ���	2.14

	� EMBED Equation.2  ���	2.15

	� EMBED Equation.2  ���	2.16

Besides fluxes, we also need concentrations.  These are given by

	� EMBED Equation.2  ���	2.17

	� EMBED Equation.2  ���	2.18

	� EMBED Equation.2  ���	2.19

where ( is the porosity and Sp is the saturation of phase p.  The saturations satisfy the constraint

	So  + Sw  +  Sg  =  1	2.20
�Combining Equations 2.6, 2.7 through 2.9, and 2.17 through 2.19 gives a mass conservation equation for each phase:

Oil

	� EMBED Equation.2  ���	2.21

Water

	� EMBED Equation.2  ���	2.22

and Gas

	� EMBED Equation.2  ���	2.23

The densities at standard conditions are constants and can, therefore, be divided out of the above equations.  This reduces the equations to the following form:

Oil

	� EMBED Equation.2  ���	2.24

Water

	� EMBED Equation.2  ���	2.25

and Gas

	� EMBED Equation.2  ���	2.26

Equations (2.10) through (2.16), (2.20), and (2.24) through (2.26) are the basic fluid flow equations which are numerically solved in a black oil simulator.

�3.	RECASTING THE FLOW EQUATIONS


A glance at Equations 2.24 through 2.26 shows part of the complexity of the basic three-dimensional, three-phase black oil simulator equations.  An equivalent but much simpler appearing form of the equations is

	� EMBED Equation.2  ���	3.1

	� EMBED Equation.2  ���	3.2

and

	� EMBED Equation.2  ���	3.3

where the symbol � EMBED Equation.2  ��� is shorthand for

	� EMBED Equation.2  ���	3.4

The form of the Darcy velocities (Equations 2.10 through 2.12) may also be simplified by defining the potential of phase p ((p) as 

	� EMBED Equation.2  ���	3.5

where we have used the assumption that g  =  gc

In this notation, including x, y, and z direction permeabilities and unit vectors i, j, k, the Darcy velocities may be written as

	� EMBED Equation.2  ���	3.6


� EMBED Equation.2  ���	3.7

and
�	� EMBED Equation.2  ���	3.8

We have used the dyadic notation � EMBED Equation.2  ���to signify that permeability is a tensor of rank two.  The expanded form of Equations 3.6 through 3.8 employs the common assumption that the coordinate axes of our reference system are aligned along the principal axes of � EMBED Equation.2  ���.  Combining Equations 3.1 through 3.3 with Equations 3.6 through 3.8 gives

	� EMBED Equation.2  ���	3.9

	� EMBED Equation.2  ���	3.10

and

	� EMBED Equation.2  ���	3.11

Equations 3.9 through 3.11 are equivalent to Peaceman’s 1977 Equations 1-105 through 1-107 for a three-dimensional system, except we have also allowed gas to dissolve in the water phase.  Our rate and coordinate system sign conventions also differ.  If these differences are taken into consideration, the formulations are seen to be equivalent.


Introduction of the Capillary Pressure Concept

The presence of oil, water, and gas phase pressures in Equations 3.9 through 3.11 complicates the problem.  For many situations, the difference between phase pressures is much smaller than the individual phase potentials and can be either ignored or treated less rigorously mathematically.  We can simplify the handling of the phase pressures and potentials in the flow equations by using the capillary pressure concept.  Let us define the difference in phase pressures as

	pcow  =  po  -  pw	3.12

and
	pcgo  =  pg  -  po .	3.13

The differences � EMBED Equation.2  ��� and � EMBED Equation.2  ��� are the capillary pressures of oil-to-water and gas-to-oil phases, respectively.  Experimentally � EMBED Equation.2  ��� and � EMBED Equation.2  ��� have been observed to be principally functions of water and gas saturations, respectively.  Using Equations 3.12 and 3.13 lets us write the water and gas phase potentials as

	� EMBED Equation.2  ���	3.14
and

	� EMBED Equation.2  ���	3.15

Combining Equations 3.9 through 3.11 with Equations 3.14 and 3.15 and rearranging yields

Oil

	� EMBED Equation.2  ���	3.16

Water

	� EMBED Equation.2  ���	3.17

and Gas

	� EMBED Equation.2  ���	3.18

The gravity and capillary contributions to the phase pressures have been collected in the terms � EMBED Equation.2  ���

	� EMBED Equation.2  ���	3.19

	� EMBED Equation.2  ���	3.20

and

� EMBED Equation.2  ���	3.21

Essentially our task is to solve Equations 3.16 through 3.18 and Equation 2.20 for the four unknowns � EMBED Equation.2  ���  All other physical properties in the equations are known, in principle, as functions of the four unknowns, or from field and laboratory data.
�The Pressure Equation

The procedure we use in BOAST to solve the flow equations requires that we first combine Equations 2.20 and 3.16 through 3.18 such that we have remaining only one equation for the unknown pressure po.  We proceed by using the following shorthand for Equations 3.16 through 3.18:

Oil

	� EMBED Equation.2  ���	3.22

Water

	� EMBED Equation.2  ���	3.23

and Gas

	� EMBED Equation.2  ���	3.24

where

	� EMBED Equation.2  ���	3.25


	� EMBED Equation.2  ���	3.26

and

	� EMBED Equation.2  ���	3.27

Recognizing that the formation volume factors, gas solubilities, and porosity are functions of pressure, we use the chain rule to expand the accumulation terms (time derivatives) of Equations 3.22 through 3.24:

Oil
	� EMBED Equation.2  ���	3.28
�Water

	� EMBED Equation.2  ���	3.29

and Gas

	� EMBED Equation.2  ���	3.30

The equality

	So  +  Sw  +  Sg  =  1	3.31
is now used to remove � EMBED Equation.2  ��� from Equation 3.30.  Differentiation of Equation 3.31 by t and rearranging gives

	� EMBED Equation.2  ���	3.32

Substituting Equation 3.32 into Equation 3.30 and simplifying yields

	� EMBED Equation.2  ���

	� EMBED Equation.2  ���

	� EMBED Equation.2  ���	3.33

Equations 3.28, 3.29, and 3.33 are three equations for the three unknowns � EMBED Equation.2  ���  Multiplying Equation 3.28 by � EMBED Equation.2  ���, Equation 3.29 by � EMBED Equation.2  ���, Equation 3.33 by Bg, and adding the results gives

	(Bo  -  RsoBg) Lo  +  (Bw  -  RswBg)Lw  +  BgLg
	� EMBED Equation.2  ���	3.34

where some simplification has been performed.  This mess can be greatly simplified by multiplying the bracketed terms and then combining with appropriate terms in the curly brackets.  We also notice the terms involving time derivatives of So and Sw vanish identically.  The result is

	� EMBED Equation.2  ���	3.35

The oil, water, gas, rock, and total compressibilities are identified as

	� EMBED Equation.2  ���	3.36

	� EMBED Equation.2  ���	3.37

	� EMBED Equation.2  ���	3.38

	� EMBED Equation.2  ���	3.39

and

	ct    =    cr  +  coSo    +    cwSw    +    cgSg	3.40

respectively.  Employing these definitions, Equations 3.25 through 3.27, and 3.31 in Equation 3.35 gives

	� EMBED Equation.2  ���	3.41

Equation 3.41 is called the pressure equation because no explicit time derivatives of saturations are present.  Our approach is to solve the three-dimensional, three-phase flow equations by first numerically solving the pressure equation for po, then using the results in Equations 3.22, 3.23, and 3.31 to find the phase saturations.  This solution procedure will be discussed in subsequent chapters.

�4.	FINITE DIFFERENCE FORMULATION:  IMPES PROCEDURE


Simulation of three-phase, three-dimensional flow in a reservoir requires solving the system of coupled, nonlinear partial differential equations.  These equations arise, as we have seen, from application of the conservation of mass principle to an oil-water-gas system.  For most practical situations, the flow equations cannot be solved analytically.  Instead, the partial differential equations are approximated by algebraic equations known as finite difference equations.  The finite difference equations are obtained by replacing derivatives with approximations derived from truncated Taylor series expansions (von Rosenberg (1977) or Kreyszig (1972)).  It is worthwhile to review how this is done before converting our partial differential equations to finite difference form.

From this point forward our technical description will move away from the more rigorous theoretical formulation of fluid flow equations to the more practical implementation methods capable of obtaining meaningful results from the equations.  Many of the methods we will discuss are justified more by industry experience than by theoretical principles.  With complex physical systems such as we are considering, this is unavoidable.  Bearing in mind our time constraints and objectives, we tended to choose proven methods whenever a choice existed.  Refinements to our methods can be made when the occasion dictates.


The Finite Difference Concept

Our objective is to replace unknown derivatives such as (p/(x with more manageable mathematical quantities.  We can do this by manipulating the Taylor series:

	� EMBED Equation.2  ���	4.1

where “(x” means the derivative is evaluated at x. If we know the value of p and its derivatives at x, then by Equation 4.1 we can compute the value of p at x + (x.  Alternatively, if we know the values of p(x) and p (x + (x) , we can approximate the derivative (p(x)/(x as follows.

Subtracting p(x) from both sides of Equation 4.1, dividing by (x, and suppressing the notation “(x” gives

	� EMBED Equation.2  ���	4.2

	� EMBED Equation.2  ���	4.3

Subtracting  (((x) from both sides of Equation 4.2 yields

	� EMBED Equation.2  ���	4.4

If (((x), which is known as the truncation error, is small compared to (p(x + (x) - p(x))/(x, then we have the approximation
	� EMBED Equation.2  ���	4.5

Equation 4.5 becomes an equality when (((x) vanishes.  For sufficiently small values of (x, we can use Equation 4.5 to replace our first order derivatives of a quantity p with respect to x by a difference between two neighboring values of p separated by a finite interval (x.  Hence the right hand side of Equation 4.5 is said to be a finite difference approximation of (p(x)/(x which is correct to first order in (x, where the order of correctness is equal to the power of (x in the leading term of Equation 4.3. Expressions similar to Equation 4.5 can be written for derivatives with respect to y, z, or t.  The increment in time (t is called the time step size.  Increments (or differences) along a spatial axis -- such as (x, (y, or (z -- are called grid block lengths along that axis.  For example, (z is the grid block length along the z-axis.


Finite Difference Approximations

We can extend the concepts of the previous section to find a number of useful approximations.  Suppose we have a continuous function p of x (such as the pressure drop across a core that is being waterflooded) and we want to estimate the value of (p/(x . This situation is illustrated in Figure 4.1.

Figure 4.1
Core with pressure taps.

p(x)
�
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If we have values of p at locations xi (from, for example, pressure tap measurements), we can estimate (p/(x using Equation 4.5 in the following form:

	� EMBED Equation.2  ���	4.6

where the notation pi means the value of p at xi, and xi is known as the ith node location.

An alternative approximation can be obtained by starting with the Taylor series:

	� EMBED Equation.2  ���	4.7

Manipulating Equation 4.7 like we did with Equation 4.1 and dropping the truncation error term gives
�	� EMBED Equation.2  ���	4.8

or, in the notation of Equation 4.6, Equation 4.7 becomes

	� EMBED Equation.2  ���	4.9

Equation 4.6 is called the forward difference or downstream approximation of (p/(x, while Equation 4.9 is termed the backward difference or upstream approximation of (p/(x.

Subtracting Equation 4.7 from 4.6 and rearranging gives in our discrete notation

	� EMBED Equation.2  ���	4.10

where the truncation error is now second order in (x.  Equation 4.10 is called the centered difference approximation of (p/(x and is more accurate than either Equation 4.6 or 4.9.  This method is, in essence, applied twice to produce the finite difference approximation for second-order derivatives.  However, despite this method's improved error estimate, there are situations when this approximation method should not be  used.  For example, in solving the parabolic differential equation (2p/(x2 =(p/(t, use of a time-centered difference approximation will lead to an unconditionally unstable finite difference equation (Peaceman, p. 53.)

If we add Equations 4.1 and 4.7 we obtain

	� EMBED Equation.2  ���	4.11

Solving for the second derivative gives

	� EMBED Equation.2  ���	4.12

where the second-order truncation error term is

	� EMBED Equation.2  ���	4.13

Equation 4.12 provides an approximation for second-order derivatives.

Many other finite difference approximations can be constructed using manipulations of the Taylor series such as presented above.  They have been described extensively in the literature and there is little value in rederiving them here since the basic ideas are the same.  For our purposes, the only other approximation we need is

�	� EMBED Equation.2  ���	4.14a

where

	� EMBED Equation.2  ���	4.14b


Figure 4.2.
Typical Grid Setup Using Above Notation.

	Pi-1	Pi	Pi+1
���
	Xi-1	(	Xi	(	Xi+1	 (
��
�������


The notation (i-1/2, (i+1/2 means the coefficients should be evaluated at xi-1/2, xi+1/2 respectively where for now xi+1/2 denotes a location somewhere between xi and xi+1, (similarly for xi-1/2). However, since the values for ( are usually known at the nodes xi, i = 1 through L, some sort of averaging procedure must be used in order to arrive at an acceptable approximation for these intermediate values of (.  Such a procedure will be outlined in the next section.


Evaluation of Transmissibilities

We are concerned with the movement of fluids between two blocks such as those in Figure 4.3.


Figure 4.3.
Transmissibility between two grid blocks.

� EMBED MSDraw.1.01  ���
���	
����

�Assuming that the conditions needed for Darcy flow are satisfied (and ignoring for the moment changes in phase mobility ( (p ) and phase formation volume factor (Bp)), we have:

	� EMBED Equation.2  ���	4.15

where (Q is the absolute average phase volumetric flow rate, (K is the Darcy-equivalent absolute permeability associated with a pressure drop from xi-1 to xi, and (Ac is the Darcy-equivalent cross-sectional area between xi-1 and xi.  To make use of the above equation, it becomes necessary to express the product (K(Ac in terms of known variables, namely xj, Kj, Acj, where j = i-1 and i.

First Darcy's law is expressed for each shaded volume element with homogeneous physical properties:

	� EMBED Equation.2  ���	4.16

	� EMBED Equation.2  ���	4.17
where pf refers to the pressure at the interface of block (i-1) and block (i).  Solving for (Pi-1 -pf) and (pf -pi) in Equations 4.16 and 4.17, respectively, and then adding the results yields:

	� EMBED Equation.2  ���	4.18

Inserting this expression into Equation 4.15 and solving for (K(Ac gives:

	� EMBED Equation.2  ���	4.19

If one finally substitutes this expression back into Equation 4.15, the result after some simplification is

	� EMBED Equation.2  ���	4.20

We still have the task of determining a suitable average for the product krp/(pBp.  Industry experience (Crichlow (1977) for example) has shown that use of a phase mobility in the block which has the larger phase potential of the two neighboring blocks yields more reliable results.  The calculation in BOAST uses the value of the phase saturation of the upstream block at time level n to determine an upstream phase relative permeability.  This is then combined with the arithmetic mean values of the phase viscosities and phase formation volume factors, giving:

	� EMBED Equation.2  ���	4.21

The final form of Equation 4.20 thus becomes:

	� EMBED Equation.2  ���	4.22

where � EMBED Equation.2  ��� is called the Darcy Phase Transmissibility between block p (i-1) and block (i).

If we now return to the pressure equation (Equation 3.41), we see frequent occurrence of the form:

	� EMBED Equation.2  ���

Expanding the first term in Equation 4.23 in finite difference form according to Equation 4.13 and using the definition of phase transmissibility, we find:

	� EMBED Equation.2  ���	4.24

Here we have assumed that the cross-sectional area remains constant from block to block, as would be the case for any rectangular grid system.  If the cross-sectional area changes from block to block, the assumption would only hold approximately, since there would arise the question of mass balance at the block interface.  However, the option to include varying cross-sectional areas is a nonrigorous yet practical feature of BOAST that yields approximate results for many realistic situations.

Equation 4.24 is now multiplied through by the ith bulk volume element   VB  =  (xi  (  (yi  (  (zi,  so that we have

	� EMBED Equation.2  ���	4.23

	� EMBED Equation.2  ���

	� EMBED Equation.2  ���	4.25

where � EMBED Equation.2  ��� is the finite difference phase transmissibility between block (i-1) and block (i).  It is this value of transmissibility that BOAST uses in its internal calculations.  It should be observed that the Darcy phase transmissibility � EMBED Equation.2  ��� equals the finite difference phase transmissibility Ap when the grid spacing is uniform.  A similar procedure is used to obtain transmissibility values for the other two dimensions.


Finite Difference Equations

Using finite difference approximations we can convert the black oil simulator partial differential equations to the algebraic equations.  Figure 4.4 illustrates the coordinate and node locations used in our three dimensional formulation.  The equations to be solved are the pressure equation 3.41, the oil saturation equation 3.22, and the water saturation equation 3.23.  These three equations are first multiplied through by the bulk volume element (VB)i,j,k.  Next, a linear difference operator is defined as follows:

	(A(p  =  (xAx(px  +  (y Ay (py  +  (zAz(pz  	4.26
where
	(xAx(px  =  Ai-1/2,j,k  (pi-1,j,k - pi,j,k)  +  Ai+1/2,j,k (pi+1,j,k - pi,j,k)  (	4.27

Using the above notation, the resulting difference equations become:

Pressure

	� EMBED Equation.2  ���	4.28

Oil

	� EMBED Equation.2  ���	4.29
�and Water

	� EMBED Equation.2  ���	4.30

where Vp  is the grid block pore volume:
	Vp  =  (VB 	4.31
Observe that a forward difference approximation has been used for representing time derivatives.  The superscripts n and n+1 denote the present and next future time level respectively.  Quantities with superscript n can be computed using existing data, whereas quantities with superscript n+1 are the unknown variables we are trying to find.

Gravity and capillary pressure effects (Equations 3.14 - 3.21) are contained in GOWT, GWWT and GGWT:

	� EMBED Equation.2  ���	4.32

	� EMBED Equation.2  ���	4.33

	� EMBED Equation.2  ���	4.34


Figure 4.4.  --  Node representation of three dimensional array of reservoir grid blocks.
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�Finite Difference Grids and Boundary Conditions

Until now we have not worried about enclosing our system within finite boundaries or specifying the location of our grid block nodes.  We have tacitly assumed, though it is not necessary mathematically, that the nodes are located at the center of an element of symmetry (such as the center of a cube).  In general, two types of grids are used: block-centered; and lattice- or point-centered.  They are illustrated in Figure  4.5.

Figure 4.5.
Node locations.
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The choice of grid and the choice of boundary conditions are intimately related, as has been discussed extensively in the literature (Peaceman, (1977), Crichlow (1977) and von Rosenberg (1977) are examples).  Selection of a grid is important in deciding how to treat differences at boundaries.  For example, if we are considering the blocks on the boundary i = 1, how do we evaluate the backward difference approximation

	� EMBED Equation.2  ���	4.35

when p and x are undefined? The usual approach is to assume the boundary of the finite difference grid is a no-flow boundary.  This means there is no pressure gradient across the boundary and, in our example, p1 = po.

A block-centered grid with the no flow boundary condition has been used in the BOAST formulation.  Implementation is achieved by setting transmissibilities at boundary interfaces to zero.


The IMPES Procedure

We now have all of the basic elements necessary for writing down the algebraic system of equations corresponding to the nonlinear, partial differential flow equations of our black oil simulator.  Once again it is useful to define new variables to simplify the notation.  In particular, the pressure equation is cast in a relatively simple form by making the following definitions:

	� EMBED Equation.2  ���	4.36
�	� EMBED Equation.2  ���	4.37

	� EMBED Equation.2  ���	4.38

	� EMBED Equation.2  ���	4.39

	� EMBED Equation.2  ���	4.40

	� EMBED Equation.2  ���	4.41

	� EMBED Equation.2  ���	4.42

All of the quantities in Equations 4.36 - 4.42 are evaluated at the present (nth) time level and many subscripts have been suppressed.  The pressure equation 4.28 becomes

	� EMBED Equation.2  ���	4.43

	� EMBED Equation.2  ���	4.44

	� EMBED Equation.2  ���	4.45

In principle and practice the coefficients of the n+1 pressures in Equation 4.43 are all known at the present time level, and an equation like Equation 4.43 exists for each grid block.  The total system of algebraic equations is solved for the pressures at the new n+1 time level.  These solution methods are discussed in the next chapter.  When the new pressures have been computed, they are used in Equations 4.29, 4.30 and 3.31 to find the new saturations � EMBED Equation.2  ���.  The new pressures and saturations are then considered the present values and the calculation is repeated.  In this way, the approximate numerical solution of the black oil simulator flow equations may be obtained for an arbitrarily long time.  This procedure is known as the implicit pressure explicit saturation (IMPES) procedure.
�5.  SOLUTION METHODS


The finite difference form of the pressure equation (Equation 4.43) leads to a system of linear equation for the I-J-K unknowns p� EMBED Equation.2  ���denotes the pressure at grid block (i,j,k) at the new (n+1) time level.  Such a system of equations may be written as

	� EMBED Equation.2  ���	5.1

where N = I-J-K, and the new (n+1) time level superscripts have been suppressed.

Alternatively, the same set of equations may be expressed in a more compact form using matrix notation as follows:

	� EMBED Equation.2  ���	5.2

where � EMBED Equation.2  ��� is the coefficient matrix, and � EMBED Equation.2  ���are column vectors as given below.

	� EMBED Equation.2  ���	5.3

Various methods exist for solving such a system of linear equations, but generally these methods fall into one of two groups - direct methods, or iterative methods.  BOAST has the option of selecting one of two direct methods (BAND or D4), or selecting an iterative technique (LSOR) to solve its system of equations.  It is standard practice to present the user with a choice of several different techniques for solving systems of equations, since the efficiency of any one technique is highly problem-dependent and "a priori" it is usually difficult to tell which technique would work the best for any one problem.

The details of each of these three methods, along with some implementation considerations, will now be presented.


Direct Methods

Direct methods are techniques for solving the system of linear equations 5.2 in a fixed number of steps.  These methods make use of elementary row operations to transform the system of equations 5.2 into other systems of equations which have identical solutions but are in some ways easier to solve than 5.2. Thus, in notational form, we have:

	� EMBED Equation.2  ���	5.4
Usually, one performs the necessary elementary row operations so that � EMBED Equation.2  ��� is an upper triangular matrix, because it then becomes an easy matter to solve for � EMBED Equation.2  ��� by backward substitution.  This procedure, known as Gaussian elimination, provides a basis for other direct methods, each of which is suited for a particular type of system of equations.

An alternative approach (but one which can be shown to be completely equivalent to the elementary row operation approach) involves the factorization of matrix � EMBED Equation.2  ��� into a lower triangular matrix � EMBED Equation.2  ��� and an upper triangular matrix � EMBED Equation.2  ���.  That is, first seek to find matrices � EMBED Equation.2  ��� and � EMBED Equation.2  ��� such that

	� EMBED Equation.2  ���	5.5

where, upon inserting this expression into Equation 5.2 we get:

	� EMBED Equation.2  ���	5.6

If such matrices can be found, then we try to solve the system of equations

	� EMBED Equation.2  ���	5.7

for z by forward substitution (since � EMBED Equation.2  ��� is a lower triangular matrix), and finally solve the system

	� EMBED Equation.2  ���	5.8

for p by backward substitution.

There are many ways to factor the matrix � EMBED Equation.2  ���, since there are N degrees of freedom in choosing the diagonal elements for � EMBED Equation.2  ��� and � EMBED Equation.2  ���.  One such method requires that the diagonal elements for � EMBED Equation.2  ��� be one; this method is called Crout's method and is the one employed in the BAND algorithm described below.


The BAND Algorithm:

The system of equations to be solved in BOAST leads to an N x N matrix � EMBED Equation.2  ��� which is sparse - that is, there are only a few (at most seven) nonzero elements in any given row of � EMBED Equation.2  ���.  Because of this fact, it is possible to label the unknowns pi in such a manner that the matrix � EMBED Equation.2  ��� has the appearance of a banded matrix.  If this is done, then the resulting direct method used (in this case direct factorization using Crout's method) becomes much more efficient, since the entries outside of the bandwidth will remain zero for the matrices � EMBED Equation.2  ��� and � EMBED Equation.2  ���, as well as for � EMBED Equation.2  ���.

The "labeling" of points alluded to earlier is known as the natural ordering: points are ordered first by increasing k, then by increasing j, and finally by increasing i.  Figure 5.1a shows a natural ordering of points for a 4 x 3 x 2 grid and serves as an example for our discussion.  With this formulation, it can be seen that there are, for example, only three blocks adjacent to Block 1, namely: Blocks 2, 3, and 7. Since these are the only blocks by which fluid can either enter or exit Block 1 (assuming the transmissibilities between these blocks are nonzero), it follows that Equation 1 can contain at most 4 nonzero terms - the  coefficients for � EMBED Equation.2  ��� Proceeding similarly, a matrix � EMBED Equation.2  ��� is produced which has a form as shown in Figure 5.2 (an x in the figure denotes a nonzero coefficient).

Upon inspection of matrix � EMBED Equation.2  ���, the maximum width of the band containing nonzero values - the bandwidth W - is seen to be:

	W  =  2JK  +   1	5.9

Since it can be shown that the amount of computational work involved in factoring the matrix � EMBED Equation.2  ��� is strongly dependent on the size of the bandwidth W, the grid should be oriented in such a manner as to reduce the size of W as much as possible.  In terms of practical implementation in BOAST, this means the user should align the grid so the longest side is in the x-direction, in order to maximize the efficiency of the BAND routine.

The specific equations used in BAND will now be presented.  First three limits are defined in terms of the bandwidth W:

	L1 ( i )  =  max (1, i  -  (W-1)/2� EMBED Equation.2  ���	5.10

	L2 ( i )  =  min (N, i  +  (W-1)/2)	5.11

	L3 ( j )  =  max (1, j  -  (W-1)/2)	5.12

The factorization algorithms now become

	� EMBED Equation.2  ���	5.13

	� EMBED Equation.2  ���	5.14


Here � EMBED Equation.2  ��� are the ith, jth elements of matrices � EMBED Equation.2  ��� respectively.  Note that  in BAND, however, the new entries for � EMBED Equation.2  ��� and � EMBED Equation.2  ���, are written over the old entries for � EMBED Equation.2  ��� (which are no longer needed) in order to conserve storage space.

Once the factorization is complete, we solve Equation 5.7 using forward substitution:

	� EMBED Equation.2  ���	5.15a

Finally, Equation 5.8 is solved for the unknown pressure pi using backward substitution:

	� EMBED Equation.2  ���	5.15b

A more complete treatment of this algorithm may be found in Peaceman, pp. 88-90 (1977).


Figure 5.1a  --  Natural Ordering for 4 x 3 x 2 Grid.
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Figure 5.1b  --  D4 Ordering for 4 x 3 x 2 Grid.
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�Figure 5.2
Coefficient Band Matrix � EMBED Equation.2  ��� Corresponding to Natural Ordering for 4 x 3 x 2 Grid.
�
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The D4 Algorithm:

In the last section a natural ordering scheme was described which produced a banded matrix.  In general, however, for a given system of N equations in N unknowns, many different orderings (up to N!) are possible.  If, using one such ordering, the matrix form of the equation is

	� EMBED Equation.2  ��� x  =  b	5.16

then, using another such ordering, the matrix form of the equation will be

	� EMBED Equation.2  ���	5.17

where Equation 5.17 is related to Equation 5.16 by the transformation

	� EMBED Equation.2  ���	5.18

The matrix � EMBED Equation.2  ���, which relates a vector in one ordering to a vector  in another ordering, is called a permutation matrix.  It is a nonsingular matrix consisting of zeros and ones; furthermore, any row or column contains only one nonzero element.

Among these various orderings there are several which have been shown to produce a substantial decrease in the subsequent matrix calculations compared to natural ordering.  One such ordering, due to Price and Coats (1973), is called D4 ordering, and will be described below.

The concept of ordering by alternate diagonal planes is first introduced.  If xi,j,k is any point in a grid system, it is said to belong to a (diagonal) plane m if its indices satisfy the relation:

	i  +  j  +  k  =  m	5.19

From this definition, it is evident that the smallest plane number is three, while the largest is M, where M  =  I  +  J  +  K.

The planes are ordered first by increasing odd-numbered planes, and then by increasing even-numbered planes.  Thus, all points in the grid system will satisfy the following relationship: if xi,j,k belongs to plane m, � EMBED Equation.2  ��� belongs to plane m’, and plane m is ordered before plane m', then point xi,j,k will be ordered before point � EMBED Equation.2  ���.

Next, within each plane an ordering must be defined.  Consequently, for all points xi,j,k within a plane m, the points are ordered first by decreasing k, and then, for a fixed k, by decreasing j.  We note that here, as in our definition for natural ordering, the most efficient implementation in BOAST requires that the grid be oriented so the longest side is along the x-axis.

As an example, the 4 x 3 x 2 grid used for the natural ordering example (Figure 5.1a) will now be reordered using D4 ordering.  Since the maximum number of planes is 4 + 3 + 2 = 9, the planes are ordered as follows:

	3, 5, 7, 9, 4, 6, 8 	5.20

and the minimum plane number is 1  +  1  +  1  =  3.

Upon reordering within each plane, Table 5.1 is produced which shows the D4 ordering index for every grid point in the system.


TABLE 5.1

	 Plane	D4	 Plane	  D4
i	j	k	Number	Point	i	j	k	Number	Point

1	1	1	3	1	1	1	2	4	13
1	2	2	5	2	1	2	1	4	14
2	1	2	5	3	2	1	1	4	15
1	3	1	5	4	1	3	2	6	16
2	2	1	5	5	2	2	2	6	17
3	1	1	5	6	3	1	2	6	18
2	3	2	7	7	2	3	1	6	19
3	2	2	7	8	3	2	1	6	20
4	1	2	7	9	4	1	1	6	21
3	3	1	7	10	3	3	2	8	22
4	2	1	7	11	4	2	2	8	23
4	3	2	9	12	4	3	1	8	24


Using BOAST's notation and referring to Table 5.1, we would have, for example, that

	INDD4 (4, 1, 2)  =  9	5.21

From Table 5.1 we can now label the grid points - this is demonstrated in Figure 5.1b.  As was done for the natural ordering case, the figure can be used to construct the form for the coefficient matrix, which is shown in Figure 5.3.  The nonzero entries are again denoted by x's; the significance of the o's appearing in the lower right-hand quadrant will be explained presently.


Figure 5.3
Coefficient Matrix � EMBED Equation.2  ���Corresponding to D4 Ordering for 4 x 3 x 2 Grid.
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Upon examination of this matrix� EMBED Equation.2  ���, it becomes clear why D4 ordering has an advantage over natural ordering.  Since there are no nonzero terms below the main diagonal in the upper half of matrix � EMBED Equation.2  ���, the upper half of � EMBED Equation.2  ��� is already upper triangular and no matrix reduction operations need be performed there.  As a result, this upper half of � EMBED Equation.2  ��� remains the same throughout the matrix reduction computations, thereby reducing the total number of computations, especially if the matrix � EMBED Equation.2  ��� is large.  In practice, D4 ordering might not be as efficient as natural ordering for small � EMBED Equation.2  ���, since some overhead computations are incurred in setting up the D4 ordering scheme.

In applying Gaussian elimination, the lower left-hand quadrant needs to be zeroed out; in doing so, new nonzero elements are created in the lower right-hand quadrant.  It is these nonzero entries which are designated by o's in Figure 5.3.  To eliminate the left-hand quadrant, the program must somehow keep track of where the lower diagonal block of nonzero entries is, so that no extraneous calculations will be performed.  This is accomplished by recognizing the following limits:

1.	The lower diagonal block of nonzero entries starts at row (N + 1)/2 + 1, and ends at row N.

2.	The bandwidth for this lower diagonal block is given by:  B1  =  JK  +  1.

3.	There is a maximum of (JK + 1) / 2 + 1 nonzero entries in the first nonzero row of the lower diagonal block.  For each subsequent row, the position of the last nonzero entry in the row is increased by one.
In the above limits, and in the rest of this section, it is assumed that integer arithmetic has been used.  For example, for our previous problem with N  =  4 x 3 x 2  =  24, the first nonzero row starts on row (24 + 1) / 2 + 1  =  row 13.  Also, the same results apply to the upper diagonal block if we replace the word "row" by the word "column".

After Gaussian elimination has been performed to zero-out the lower left-hand quadrant, a band matrix having bandwidth W = 2JK + 1 is produced in the lower right-hand quadrant.  We can consider this band matrix as being the coefficient matrix for the lower half of unknowns; i.e. one is now in a position to solve for the unknowns � EMBED Equation.2  ��� using the band algorithm discussed earlier.  Finally, backward substitution is used to solve for the remaining unknowns:

	� EMBED Equation.2  ���


Iterative Methods

Direct methods are usually applied for systems of equations which are, at most, intermediate in size (say � EMBED Equation.2  ���).  Because of the drastic increase in computational effort as the grid size increases (for example, for the BAND algorithm, the amount of calculations increases approximately as the cube of the bandwidth), there exists a grid size, such that for any grid size larger than this, an iterative method would have a computational advantage over a direct method.  More importantly, perhaps, is the fact that direct methods require large amounts of storage for the coefficient matrix � EMBED Equation.2  ���, so there could be systems of equations which simply would not fit into even the largest computers.

Iterative methods, on the other hand, are particularly well suited for large, sparse systems of equations.  The general idea in any iterative method is to start out with an initial guess for the solution vector, and to somehow iterate upon this initial guess until some convergence criterion is satisfied.  One such iterative method receiving wide-spread industry use is the line successive overrelaxation (LSOR) iterative method, which has been implemented in BOAST.

Consider again the linear system given by Equation 5.2. First define a splitting for matrix � EMBED Equation.2  ��� as follows:

	� EMBED Equation.2  ���	5.22

where � EMBED Equation.2  ���is a diagonal matrix having the same diagonal entries as matrix � EMBED Equation.2  ���. Inserting 5.22 into Equation 5.2 and rearranging yields the iterative procedure:

	� EMBED Equation.2  ���	5.23

or
	� EMBED Equation.2  ���	5.24

where

	� EMBED Equation.2  ���	5.25

and
	� EMBED Equation.2  ���	5.26

The iterative procedure 5.24 is known as the Jacobi method.  This procedure is equivalent to solving each of the N equations in the system 5.2 for pi, and then generating each � EMBED Equation.2  ��� by using the formula:

	� EMBED Equation.2  ���	5.27

However, this method does not make full use of the most recent estimates of � EMBED Equation.2  ���.  A method which takes the recent estimates into account is called the Gauss-Seidel method, and is defined by:

	� EMBED Equation.2  ���	5.28
or

	� EMBED Equation.2  ���	5.29

where � EMBED Equation.2  ��� and � EMBED Equation.2  ��� are strictly lower and upper triangular matrices, respectively, such that

	� EMBED Equation.2  ��� = � EMBED Equation.2  ��� + � EMBED Equation.2  ���	5.30

Another refinement of this iterative method involves a weighting procedure between new and old iterates.  Introducing a weighting parameter (, Equation 5.28 is modified to read:

	� EMBED Equation.2  ���(L pn+1 + U pn + C) + (1 - () pn	5.31

Equation 5.31 can be simplified to read:

	� EMBED Equation.2  ���( pn + (I - (L)-1 ( C	5.32

where

	(� EMBED Equation.2  ���	5.33

If ( > 1, then ( is known as the overrelaxation parameter, since we are in some sense “overcorrecting" the new iterate pn+1 , where pn+1 would be the new iterate for the Gauss-Seidel method.  For a complete treatment of the above discussion, see Young (1971), Chapter 3.

The methods treated so far have been point iterative methods, which could be solved explicitly.  As an extension of this SOR theory, we could require that all points in a line (say, along the x-axis) be solved first implicitly (using a tridiagonal system of equations), and then these values would be appropriately weighted using (.  As we proceed from line to line, the updated values of the unknowns from the previous line could be used.  It is this method, an extension of Equation 5.32, which is known as the LSOR method, and it is the LSOR method that is the iterative method used in BOAST.  More details of the LSOR method can be found in either Young (1971) or Peaceman (1977).

There still remains the problem of choosing a suitable value for ( to optimize convergence.  It can be shown that under rather general assumptions for the matrix � EMBED Equation.2  ���, the optimal value of ( (=(b )
for use in Equation 5.32 can be related to the spectral radius ((� EMBED Equation.2  ���) of the Jacobi matrix � EMBED Equation.2  ��� by the following formula:

	� EMBED Equation.2  ���	5.34

where the matrix � EMBED Equation.2  ��� is assumed to have real eigenvalues and ((� EMBED Equation.2  ���) < 1.  This formula also holds for an optimal overrelaxation parameter (b associated with an LSOR matrix, as long as ((� EMBED Equation.2  ���) is now the spectral radius of the line Jacobi matrix � EMBED Equation.2  ��� (see Peaceman or Young).

One method to compute ((� EMBED Equation.2  ���), and hence (b, involves an iterative procedure, and as such it can be carried out along with the main iterative procedure of determining � EMBED Equation.2  ���.  First one defines the difference vector (n by

	� EMBED Equation.2  ���	5.35

Many convergence criteria may be defined; the one which is used in BOAST requires that

	� EMBED Equation.2  ���	5.36

where � EMBED Equation.2  ���is the infinity norm of a vector and is equal to the maximum absolute value of the components of (n.  The parameter ( is a user-supplied positive constant, and is usually much less than one.  A value for ( is then selected, and its convergence rate is estimated in an attempt to determine whether a better value of ( could in fact be used.  The rate at which the solution converges is estimated by the following:

	� EMBED Equation.2  ���	5.37

When the values for On are "sufficiently close" to a limiting value (O, this value is used as an approximation for the spectral radius of  (.  In BOAST, "sufficiently close" means:

	� EMBED Equation.2  ���	5.38

where ( is a positive user-supplied constant such that ( is much less than one.

A value for ((� EMBED Equation.2  ���) is estimated by the formula:

	� EMBED Equation.2  ���	5.39

A new value for w is then re-computed using Equation 5.34 and the process continues.  It should be noted that this process will converge properly only if the current value for ( is less than the newly computed value for (.  Otherwise, the values for On will oscillate slightly and  an accurate approximation for the spectral radius of ( will be difficult to obtain.  For an in-depth discussion of the above topic concerning the optimal choice for (, the reader is referred to Young (1971), Chapter 6, and in particular, page 210.


Choice of Solution Method

The three solution methods described above can be collectively used to solve a wide variety of problems encountered in numerical reservoir simulation.  However, for any one problem, one solution method might be more suited than the others in efficiently computing an accurate solution.  In this section, we briefly look at the advantages, disadvantages, and recommended uses for each method.

In order to compare work requirements for the three methods, a representative two-dimensional grid is chosen, where I  (  J. The work (which equals the total number of multiplications and divisions) for each method is given as follows:

	� EMBED Equation.2  ���	5.40

	� EMBED Equation.2  ���	5.41

	� EMBED Equation.2  ���	5.42

where Niter is the number of iterations per time step.  As can be seen from the above formulas, using the D4 algorithm can result in a two-fold to four-fold decrease in computational work over the BAND algorithm, especially for large I, J.  In practice, this advantage is somewhat lessened by the additional overhead computations needed to set up the D4 ordering.  The LSOR method, on the other hand, can result in even greater savings if Niter is sufficiently small.

Besides the work requirements, we must also consider storage requirements.  In using the BAND or D4 algorithms, a coefficient matrix � EMBED Equation.2  ��� is set up, which takes up N2 storage elements. (It is possible to store the nonzero elements of � EMBED Equation.2  ���  more efficiently, but the programming complexity would have increased greatly, leading to a lack of program readability, which BOAST was intended to present.)  Therefore, for large grid sizes, the user may be forced to choose the LSOR method, which does not suffer from storage constraints.

The LSOR method, however, is not without drawbacks.  A judicious use of the convergence parameter TOL and the omega-updating parameter TOL1 is necessary to insure rapid convergence and a minimum number of iterations.  Typical ranges for these parameters are as follows:

	0.1  (  TOL  (  1.0	5.43

	0.0001  (  TOL1  (  0.01	5.44

Note that these ranges are only intended to give ballpark figures; the user must experiment with several different values to see which will yield the optimal results for the user's particular problem.

In summary, it is recommended that the BAND algorithm be reserved for one-dimensional or small two-dimensional problems.  For intermediate problems, the D4 algorithm will probably be the most efficient.  Finally, for large three-dimensional problems (or those for which the storage constraint precludes any of the direct methods), LSOR should be used.  These recommendations are only intended as a general guide; again, a little experimenting with these methods is the best way to insure that the optimal method is chosen.

�6.  WELL REPRESENTATION


Relatively little information has appeared in the literature about representing wells in numerical simulators.  Some recent discussions are contained in Williamson and Chappelear (1981), and in Crichlow (1977).  These sources form the basis for the well model used in BOAST and should be referred to for a more detailed discussion of the model and its alternatives.

There are essentially two methods for representing a well in a simulator: by rate constraint, or by pressure constraint.  The reason for this may be seen as follows:

Assume, for example, that we want to represent an oil production well in the simulator.  The appropriate sink term Qo in units of oil volume flowing per unit time at standard conditions is

	� EMBED Equation.2  ���	6.1

Employing the productivity index (PI) concept, the oil production rate Qo can also be written as 

	� EMBED Equation.2  ���	6.2

where pe is the reservoir pressure and pwf is the well flowing pressure.  The well grid block pressure p is usually substituted for pe:

	� EMBED Equation.2  ���	6.3

The definition of PI implicit in Equation 6.3 contains rock and wellbore properties.  Fluid mobility has been explicitly written.  This should be kept in mind when comparing Equation 6.3 with similar equations from other reference sources.

The variables in Equation 6.3 are Qo and p, while the remaining terms are considered parameters.  When one of the variables is specified, the other can be computed.  For a rate constrained well, Qo is specified and the simulator solves the pressure equation for p.  Alternatively, when a well is pressure constrained, Equation 6.3 is used in place of Qo in the pressure equation.  The subsequent well block pressure is then substituted into Equation 6.3 from which Qo is found.  Either constraint method is valid; the method used depends on the physical system being modeled.  Both constraint methods are contained in BOAST and are summarized below.


Rate Constraint Representation

Case 1:  Oil Production Rate Specified

In this representation, rates may be specified for injectors or producers.  If the well of interest is a producer, its specified rate may be either the oil rate Qo or the total fluid rate QT.  Assuming the well may be completed in K layers, as we will throughout, the production rates of layer k for a specified oil rate are:

�Oil

	� EMBED Equation.2  ���	6.4

Water

	� EMBED Equation.2  ���	6.5

and Gas

	� EMBED Equation.2  ���	6.6

Notice that PI's may be specified by layer.  This capability lets the BOAST user take into account permeability contrast.


Case 2:  Total Production Rate Specified

When QT is specified, we first compute the phase mobility ratio for all layers:

Oil Mobility Ratio

	� EMBED Equation.2  ���	6.7

Water Mobility Ratio

	� EMBED Equation.2  ���	6.8

and Gas Mobility Ratio

	� EMBED Equation.2  ���	6.9


We now compute the total oil rate

	� EMBED Equation.2  ���	6.10

Given Equation 6.10, we simply proceed as in Equation 6.4 through 6.6 above.
�Case 3:  Injection Rate Specified

If the well is a water or gas injector, the user must specify the total water or gas injection rates Qw or Qg, respectively, and well injectivity indexes (WI) for each layer.  The injection rate for each layer is then allocated as follows:

Water Injection Rate

	� EMBED Equation.2  ���	6.11

Gas Injection Rate

	� EMBED Equation.2  ���	6.12

It is important to note that allocation of injection fluids is based on total mobilities, and not just injected fluid mobility.  This is necessary for the following reason.

If an injector is placed in a block where the relative permeability to the injection fluid is zero, then the simulator using injection fluid mobility only would prohibit fluid injection even though a real well would allow fluid injection.  A common example would be water injection into a block containing oil and irreducible water.  To avoid the unrealistic result of no fluid injection, it is assumed the total mobility of the block should be used.  For most cases, the error of this method will only persist for a few time steps because, in time, the mobile fluid saturation in the block will be dominated by the injected fluid.  Consequently, Equations 6.11 and 6.12 contain total fluid mobilities.


Implicit Pressure Constraint Representation

The source/sink terms in Equation 4.21 may be written as
	� EMBED Equation.2  ���	6.13

where the subscript p signifies the appropriate oil. water, or gas phase.  If the well is a producer, PID = PI and pn+1 > PWF where PWF is the well flowing pressure pwf.  If the well is an injector, PID = WI and pn+1 < PWF.

Substituting Equation 6.13 into Equation 4.21, we can implicitly solve for pressure.  The computed pressure pn+1 is then replaced in Equation 6.13 to yield rates.  This procedure is accomplished in BOAST simply by redefining the coefficients of the pressure equation such that

	� EMBED Equation.2  ���	6.14

	� EMBED Equation.2  ���	6.15
where

	� EMBED Equation.2  ���	6.16

The 5.615 factor converts barrels per day to cubic feet per day.  The new E and B terms are defined immediately before solving the linear system of pressure equations and after the E and B matrices defined by Equations 4.44 and 4.45 are first computed.


Explicit Pressure Constraint Representation

The most commonly used method of calculating rates when wells are under pressure constraint is based on the method described below:

Case 1:  Oil Production Wells

We assume that flowing bottomhole pressures (PWF) and well PI's are specified for a pressure constrained well.  The oil rate for layer k is given by

	� EMBED Equation.2  ���	6.17

where PID  =  PI and the explicit pressure pn is used.  If pn < PWF, then the well is shut in.  When pn > PWF, Qok is calculated and then substituted into Equations 6.5 and 6.6 to find Qwk and Qgk, respectively.


Case 2:  Injection  Wells

The injection  rate  for  a water or gas injection well is computed from

	� EMBED Equation.2  ���	6.18


where the subscript p denotes water or gas, and PID = WI.  Fluid injection occurs when pn < PWF.  If pn > PWF, the injection well is shut in. Also, note that total mobility is used for the injection well rate calculation.  The reason for this was discussed under Case 3 of the Rate Constraint Representation section.

Improvements in the above methods can be made by calculating semi-implicit mobilities (Crichlow (1977), and Williamson and Chappelear (1981)).  This is not presently done in BOAST, because the explicit mobility calculation now used is sufficient for all cases handled by IMPES.  The principal limitation of the explicit mobility - explicit pressure representation is its inability to properly model coning.  Since the use of BOAST for modeling coning is not recommended, the calculation of semi-implicit mobilities is not needed.


Determining Layer Flow Index (PID)

A value of the layer flow index PID can be estimated from the formula (Peaceman, 1978)

	� EMBED Equation.2  ���	6.19

where (L = (x for a square well block, and � EMBED Equation.2  ��� for a rectangular well block.  The subscript k in Equation 6.19 denotes the kth layer.  The remaining parameters are defined as:

	K	= 	air permeability of layer k, md,
	h	= 	thickness of layer k, feet,
	rw	= 	wellbore radius, feet,
and	s	= 	dimensionless skin factor.

It is possible to relate Equation 6.19 to measured well PI's.  For example, suppose the PI of an oil producer is measured to be PIobs.  PIobs is the ratio of the rate of oil production Qobs for a given pressure drop Pobs, thus

	� EMBED Equation.2  ���	6.20

Assuming uniform, radial Darcy flow, it can be shown that PIobs is related to formation and fluid parameters by (Crichlow, pg. (1977)):

	� EMBED Equation.2  ���	6.21

where re is the drainage radius of the well.  Combining Equations 6.19 and 6.21 gives for a single layer well

� EMBED Equation.2  ���	6.22

In principle, then, the layer flow index could be related to measured values.  In practice, however, the terms re, S, and kro /(oBo are seldom well known, especially for a multiphase flowing well.  As a matter of expediency, therefore, it is often better to use Equation 6.19 to compute an initial estimate of PID.  This value can then be improved by adjusting it until the simulator computed well rates match the initial observed well rates.
�7.  SPECIAL TOPICS


A number of disparate, special topics which do not come under the purview of the preceding chapters are discussed below.  These topics include a pressure initialization algorithm, a bubble point tracking algorithm, an automatic time step controlling method, a material balance calculation, and a brief discussion of numerical dispersion.  Each of the topics is important to the understanding and correct application of BOAST.


Pressure Initialization

It is important when making cross-section or 3-D runs that the pressures in the model are correctly initialized.  If not, phase potential differences due to gravity terms could cause fluid migration even though no wells are operative.  Consequently, a simple pressure initialization algorithm is used in BOAST.  Consider a grid block which may have a gas-oil contact and a water-oil contact as in Figure 7.1.


Figure 7.1
Grid Block i,j,k, for Pressure Initialization.
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We assume the pressure in the block is dominated by the density of the phase at the block midpoint and that there are no transition zones between different phases initially.  The pressure and depth at the gas-oil contact are PGOC and GOC, respectively.  Similarly, for the water-oil contact we have PWOC and WOC.

The initial pressure assigned to the grid block in Figure 7.1 is determined by the depth of the node (midpoint) relative to the respective contact elevations.

Let us define the depth of the block midpoint from datum as ELijk  With this definition, the pressure in the block is given by the following algorithm:

a.  	If	ELijk 	< 	GOC 	then  	(g  =  (gsc  /Bg	7.1
and 	Pijk  	=	PGOC  	+   	(g  	(ELijk  -  GOC) / 144 	7.2
b.  	If	ELijk 	>	WOC	then  	(w  =  � EMBED Equation.2  ���  ((wsc  +  Rsw  (  (gsc)	7.3
and 	Pijk 	= 	PWOC 	+    	(w    (ELijk  -  WOC) / 144	7.4
c. 	If 	GOC	< 	ELijk   (	WOC	then	(o  =  � EMBED Equation.2  ���  ((osc  +  Rso  (  (gsc)	7.5
	and 	Pijk	=	PWOC	+	(o	(ELijk  -  WOC) /144	7.6

This algorithm should be reasonable for systems with initial transition zones that are small relative to the total thickness of the formation. other initialization schemes which can be incorporated in BOAST, but are not now used, are discussed by Hearn (1971) and Coats, et al (1973).


Bubble Point Tracking

Among the fluid data needed by BOAST are the oil formation volume factor Bo , the solubility of gas in oil Rso, and the oil viscosity (0.  These properties are functions of pressure.  Under-saturated curves are shown as solid lines in Figure 7.2, and saturated curves are depicted by dashed lines for a bubble point (B.  The user specifies the saturated curves and the slopes of the straight lines representing the undersaturated curves for the initial bubble point pB.

As the reservoir is depleted, the value of each oil property moves along the appropriate curve in the direction of decreasing pressure.  When the pressure goes below bubble point, a free gas saturation will form.  If the free gas saturation exceeds the trapped gas saturation, gas becomes mobile and can be produced.  Production of the gas will change the local total gas/oil ratio and as a consequence, the local saturation pressure (bubble point) will change.  If the reservoir is repressured by, for example, waterflooding, the initial bubble point will no longer be correct.  To account for this effect, the following procedure has been included as an option in BOAST.

Assume we have free gas in a block containing saturated oil.  The problem of interest here is to estimate the pressure at which the free gas will completely dissolve in the grid block oil.  If we estimate a new gas solubility � EMBED Equation.2  ��� from the volumes of oil and gas in the block, we can use the saturated Rso versus p curves to find a new bubble point� EMBED Equation.2  ���.  The new solubility is estimated as the sum of the dissolved gas and the free gas in the block divided by the stock tank oil in the block:  thus

	� EMBED Equation.2  ���	7.7

or

	� EMBED Equation.2  ���	7.8

The saturation pressure corresponding to � EMBED Equation.2  ��� is the new bubble point pressure � EMBED Equation.2  ���.  Undersaturated curves for pressures above � EMBED Equation.2  ��� are parallel to the initial undersaturated curves.

�Figure 7.2  --  Oil Properties:
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Automatic Time Step Control

The BOAST user has the option of specifying the time step size, or else specifying an initial time step size which the program will either increase or decrease depending on the maximum saturation and pressure changes occurring within the model.  It is often useful to activate the automatic time step control (ATSC) - the latter of the above choices - because the ATSC can increase the time step size when changes occur slowly in the model, or decrease the time step size when rapid changes are being computed.

If the ATSC is activated, the program will compute the maximum saturation (DSMC) and pressure (DPMC) changes which occurred over the previous time step.  When the maximum computed changes are less than the user-specified maximum allowable changes in saturation (DSMAX) and pressure (DPMAX), the time step size will be multiplied by a user-specified factor (FACT1) which should equal or exceed unity.  On the other hand, if either DSMC exceeds DSMAX or DPMC exceeds DPMAX, the time step size is multiplied by a user-specified factor (FACT2) which should be equal to or less than unity.

The new time step size is used in the next time step.  It is important to note that BOAST repeats a time step if DSMC or DPMC exceeds user-specified values DSMAX or DPMAX, respectively.  The time step size is never allowed to be less than a user-specified value (DTMIN), nor larger than a user-specified value (DTMAX).  If FACT2, the factor for decreasing time step size, equals one, the program will not repeat a time step.  Consequently, the user should monitor the material balance values printed in the Summary Report to be sure no serious numerical problems have occurred whenever FACT2 = 1.

Calculation stability and maximum time step size are closely related.  If the time step size is too large, there is a good chance BOAST will compute saturations larger than one.  The occurrence of this unphysical result can be minimized if the user specifies DTMAX such that the maximum saturation change in any one grid block for the maximum time step is from 5 to 10 percent.


Material Balance Calculation

A simple material balance calculation is performed by BOAST as a check on the accuracy of the finite difference calculations.  The volumes-in-place of oil, gas, and water at the beginning of the time step are compared to their respective volumes-in-place at the end of the time step with account being taken of injected and produced fluids.  The percent change over the time step is output for each of the three phases in the Summary Report.

If the material balances are a percent or less, the program accuracy may be considered acceptable for most problems.  By contrast, a large material balance indicates the IMPES formulation is having problems with the input data.  This does not mean BOAST cannot handle the reservoir problem.  It does mean the user should adjust calculation parameters such as time step size and solution tolerances.  As a rule-of-thumb, the first thing to do when faced with a large material balance error is to reduce the time step size.


Numerical Dispersion

BOAST, like most simulators in use today, solves the black oil fluid flow equations by replacing derivatives by finite difference approximations as was shown in Chapter 4.  The truncation error introduced by the approximation is small for many systems of practical interest and the approximate solutions of the finite difference equations are accurate enough for engineering purposes.  For some systems, however, the truncation error cannot be ignored.  Such systems are convection-dominated with sharp displacement fronts.  Examples include miscible floods and immiscible floods in which the ratio of capillary to viscous forces is small.

A dominant characteristic of numerical truncation error is the smearing of otherwise sharp saturation fronts.  This is readily demonstrated when a simulator is used to model the Buckley-Leverett problem.  Illustrative results are depicted in Figure 7.3. The truncation error makes the saturation front appear more dispersed than it should, hence the truncation error is known as numerical dispersion or numerical diffusion.

Lantz (1971) showed that the total dispersion D tot in a one dimensional simulator run is the sum of physical dispersion and numerical dispersion:

	Dtot  =  Dphy  +  Dnum  .	7.9

An extension of Lantz's method to three dimensions by Fanchi (1980) demonstrated the validity of Equation 7.9 for multidimensions, and also showed multidimensional numerical dispersion (MND) can cause rotation of the principal flow axes for a given system.  Fanchi's paper (1980) contains a method for estimating the magnitude of the rotation effect.  Computation of the magnitude of the front smearing and rotation effects can help the user of a finite difference simulator evaluate the validity of the simulator.  The reader is referred to Appendix A for further details and examples.


Figure 7.3.
Smearing of saturation fronts by numerical dispersion.
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�8.  RECOMMENDED PROGRAM USES


A numerical reservoir simulation program, such as BOAST, is an engineering tool which, when properly applied, can provide an estimation of reservoir performance under a variety of user specified conditions and constraints.  The key concept in the foregoing definition is that the reservoir simulator is an engineering tool and must be applied with a great deal of engineering judgment.  Too many people view the simulation program as a "black box" which will provide the answer, i.e. exact production forecasts and answers to operating problems.  Reservoir simulators do not provide answers; they provide estimates of performance for user defined reservoir models.  These performance estimates can then be used along with economic evaluations to allow the engineer to make the required operating or field development decisions.

Many users of simulation programs feel that it is necessary to rigorously model their reservoir, often using a fieldwide, three-dimensional reservoir model, in order to have a respectable and valid simulation model study.  This attitude often results in a great deal of wasted time and money through overkill.  In many cases, a simple cross-sectional or two-dimensional areal simulation model will be adequate to allow the engineer to solve the operating problem or reach the decision he faces.  Several excellent papers have been published (Coats, 1969; Odeh, 1969; Staggs and Herbeck, 1971) which discuss the approach to be taken when considering using reservoir simulation to solve a particular problem.  Those users who have not had much experience with reservoir simulation would be well advised to read these references before beginning a simulation model study.  The general rule-of-thumb expressed in these references is that a simulation study should use the simplest model and coarsest reservoir description which produce a sufficient performance estimate to allow the engineer to make the necessary operating or field development decisions.

When applying a numerical reservoir simulator to solve a particular problem, a number of decisions must be made to insure that the correct tool is being applied and that the reservoir model is appropriate to the problem at hand.  The first requirement is a clear and concise statement of the problem to be solved and for the objectives or questions to be addressed by the study.

The choice of a simulator will depend on the specific problem.  Note that here and throughout the discussion the term "simulator" refers to a computer program independent of any specific application, and "model" refers to the simulator input data (model grid system, reservoir description, etc.) representing a specific physical system.  Simulators can be categorized by type (e.g. black oil, dry gas, compositional, thermal, chemical flood, etc.), by formulation (e.g. IMPES, sequential, implicit, variational, finite-difference, five-point, nine-point, etc.), and by solution technique (e.g. direct solution, SOR, SIP, ADIP, etc.). Coats (1982) presents a readable overview of the various simulator types, formulations, and solution techniques.

The BOAST program is a three-dimensional, three-phase black oil, finite-difference, IMPES simulator incorporating both direct solution and LSOR solution techniques.

The BOAST three-phase black oil simulator assumes the reservoir fluids can be described by three fluid phases (oil, gas, and water) of constant composition whose physical properties are single-valued functions of pressure only.  These reservoir fluid approximations are found to be acceptable for a large percentage of the world's oil and gas reservoirs.  Thus, black oil simulators have a wide range of application and are the most commonly used reservoir simulation programs.

The BOAST program simulates isothermal, darcy flow in three dimensions.  A conventional finite-difference, implicit pressure-explicit saturation (IMPES) formulation is used.  The IMPES formu-lation is discussed in more detail in Chapter 4 of Part A of this volume.

As is true for any of the formulations, IMPES has both advantages and limitations which must be recognized to properly apply the BOAST program.  The IMPES formulation is straightforward, requires less arithmetic per time step than other formulations, and has much smaller storage requirements than a fully implicit formulation.  This allows simulation of larger problems on small computers.

The major disadvantage of the IMPES formulation is that the solution is not as stable for some problems as simultaneous solution or strongly implicit formulations due to the explicit treatment of saturations.  This will be a major concern only in cases where small grid cells and/or very high flux rates combine to produce rapid saturation changes.  In such cases, the time step size may have to be reduced severely in order to maintain stability.  This can cause computing time requirements to become very large.  An example of a class of problems for which these conditions become so limiting as to render the IMPES formulation unsuitable is near-wellbore coning problems.  For this reason, the BOAST program is not recommended for use in simulating single-well coning phenomena.

While the BOAST simulator does have some limitations in its scope of applications, there are a large number of commonly encountered black oil reservoir simulation problems which can be handled very efficiently and on relatively small computers by the BOAST program.  BOAST can simulate oil and/or gas recovery by fluid expansion, displacement, gravity drainage, and capillary imbibition mechanisms.

Some of the more common field production problems for which BOAST is particularly well suited include: primary depletion studies, pressure maintenance by water and/or gas injection, and secondary recovery waterflood operations.
�9.  COMMENTS ON CONDUCTING A SIMULATION MODEL STUDY


This chapter contains a brief outline of the major steps involved in conducting a reservoir simulation model study and presents some hints, suggestions, and ideas to consider.  The major steps in the conduct of a simulation study which will be discussed are: 

1 	obtain a clear statement of the problem and objectives for the study, 
2	select the appropriate simulation tool (program) for the problem, 
3	examine all available geologic and engineering data to develop the best possible reservoir description, 
4	choose a grid system to model the reservoir, 
5	locate the necessary reservoir and production data and reduce it to the form required for input into the model, 
6	obtain estimates of oil-in-place from volumetric or material balance calculations as appropriate, 
7	conduct parameter sensitivity studies and make history matching runs as needed to obtain a satisfactory performance match, and
8	make prediction runs to estimate production performance under alternative operating plans as needed.  

An example of a simulation study by Harpole and Hearn (1982) is presented in Appendix B. This study contains all of the steps discussed here.

The outline above is very general and may need to be changed and/or expanded to fit the specific problem being investigated.  Points 1 and 2 above are discussed in Chapter 8 of this volume.  Before beginning an expensive numerical simulation study, the following criteria should be met:

a.	An economically important problem, such as determining the optimum reservoir pro-duction strategy, exists.
b.	All required input data are available.
c.	The solution to the economically important problem cannot be satisfactorily solved using simpler and less expensive tools such as a material balance program.


Reservoir Description and Grid Selection

The first step in the study is to develop the best possible reservoir description using all available geologic and engineering data.  An accurate reservoir description is essential to the success of the simulation study (Harris, 1975).  Previous geologic and engineering reports often provide an excellent starting point for this.  The degree of detail or complexity of the reservoir description required will be determined by the scope of the problem and the grid system chosen for the model.  However, a good understanding of the reservoir and the geologic controls on production performance is needed regardless of the model grid chosen or the complexity of the simulation approach taken.

The development of the reservoir description and understanding of the producing characteristics of the reservoir are not things that are done only once at the start of the study, but rather they are part of an ongoing and continuing process throughout the study.  The description of the reservoir must remain flexible and evolve as the study proceeds or new data become available.  However, having a good reservoir description at the outset will make the study easier and greatly improve the chances for success.

One of the most important steps in construction of the reservoir model is the selection of the grid system to be used.  This decision is fundamental in that it will determine the complexity of the simulation approach and the amount and format of the data input required.

Grid selection includes determining grid block size and grid orientation.  An important rule of reservoir modeling is to choose the coarsest grid that adequately describes the known features of the reservoir.  This will keep computer costs to a minimum without adversely affecting the reliability of the simulation study.

Computing time and cost depend on the procedure used to solve the finite difference equations, on the number of grid blocks used, and on the number of spatial dimensions.  Since computer cost is proportional to the number of arithmetic operations per time step, an increase in the number of grid blocks or number of dimensions can result in a large increase in costs.  Sometimes it is worthwhile to use a large number of grid blocks or a three-dimensional grid for large or complex problems.  Usually, however, attempts to increase the number of grid blocks or dimensions are motivated by a desire to increase accuracy.  Although justifiable in some cases, the temptation to increase accuracy should be tempered with the knowledge that the input data are occasionally unreliable and are often representative of only a small fraction of the actual reservoir.

In some cases, the storage capacity of the computer will be a limiting constraint.  Some approaches which can be used to reduce the number of grids and storage requirements include cross-sectional simulations, 2-D areal simulations, simulations of a small symmetry element or a part of a pattern (e.g. five-spot or quarter five-spot), simulation of a "typical" portion of the field using average reservoir properties, and use of pseudo functions to reduce the number of grid cells (Hearn, 1971; Kyte and Berry, 1975; Coats, 1973).

Other areas of concern when choosing a model grid include numerical dispersion, grid orientation, and the required areal and vertical resolution of the pressure or saturation distributions.  More information about numerical dispersion and grid orientation can be found in Lantz (1971), Fanchi (1980), or their references.  Desired resolution depends, on the other hand, on the demands of the study and must be decided by the user.


Data Collection and Reduction

A necessary phase of every simulation study is the gathering of data to be used in the simulator.  Values for the physical quantities must be specified before a simulation can begin.  The particular data needed will depend on the nature and complexity of the study.

The required data can be classified into three groups: reservoir rock properties, fluid properties, and field performance history.  Some reservoir rock and fluid properties and their common sources are presented in Table 9.1..  The lack of detailed rock data anywhere in the reservoir except at well sites requires that the data be inferred using the best available geologic description and the following procedure:

a.	Collect all data pertaining to the relevant physical quantity.  Plot these data by location on a plan map of the region being modeled.
b.	Contour the data points to obtain a spatial distribution consistent with good engineering judgment and known geological trends in the region.
c.	Digitize the contoured data to obtain the required rock data values at each node of the grid being employed.  This step is performed after the grid has been selected.
�TABLE 9.1
SOURCES OF COMMON RESERVOIR DATA REQUIRED FOR SIMULATION STUDIES

Property	Sources

Permeability	Pressure Transient Testing, Core Analyses, Correlations

Porosity	Core Analyses, Well Log Data

Structure, Thickness	Geologic Maps, Core Analyses, Well Log Data

Relative Permeability and Capillary Pressure	Laboratory Core Flow Tests

Saturations	Well Log Data, Core Analyses, Pressure Cores, Log-Inject-Log, Single-Well Tracer Tests

PVT Data	Laboratory Analyses of Reservoir Fluid
(Formation Volume Factors,	Samples, Correlations
Gas Solubility, Viscosity, Density)


Reservoir fluid properties (PVT data) include fluid viscosities, densities, formation volume factors, gas solubilities, etc.  These data are usually obtained by laboratory analyses applied to fluid samples taken from the reservoir.  Often the PVT data are not known over as wide a range of pressures as would be desirable for a computer run.  When this occurs, the fluid data base can be broadened by complementing the laboratory data with correlations.

The combination of reservoir rock and fluid properties comprises the initialization data for the model, i.e., the data which must be coded before the simulation of the field performance can begin.  The remaining data that must be coded are called recurrent data and are taken from the field performance history.

Included in the field performance history are the production and injection histories, time-dependent pressure distributions, and well indexes (PI).  The production and injection histories include water-oil ratios; gas-oil ratios; oil, gas, and water production and injection data; and fluid breakthrough times.  The simulator calculates production and pressure performance based on the input data provided.  Simulator performance calculations are then compared to the observed production performance.

Obtaining data in the field is often difficult and time consuming.  Consequently, field measurements are made only when necessary.  Furthermore, the analysis of the measured results may not be correct due to the complexity of the measuring process.  For these reasons and others, it is not uncommon to find that needed information is inaccurate, incomplete, or missing altogether.  By employing good engineering judgment and experience, it is possible to determine which data are valuable and which should be used with caution.  The unreliable data are usually the first to be adjusted during the history match, whereas data deemed accurate should be changed only as a last resort, if at all.


Comments on Relative Permeability and Fluid PVT Data

Some of the most critical data in terms of their effect on simulator performance are the relative permeability curves.  Unfortunately, relative permeability curves are often among the missing or poorer quality data.  Relative permeability data are affected significantly by alterations in wettability conditions in the core.  Ideally, the relative permeability data should be measured in the laboratory under the same conditions of wettability that exist in the reservoir.  One method of approaching this ideal is to use preserved, "native-state" core samples.  These are cores which are drilled using crude oil or some special coring fluid designed to minimize wettability alterations.  The cores are then sealed at the wellsite to minimize exposure to oxygen or drying and then preserved until ready for flow testing in the laboratory.  However, this process is expensive and most relative permeability data are obtained on restored-state cores in the laboratory.

Laboratory reservoir fluid analyses generally provide data from both a differential liberation experiment and a flash experiment approximating field separator conditions.  The differential and flash liberation data can be significantly different for some oils.  The actual reservoir production process is some combination of the differential and flash processes.  The assumption normally made in preparing PVT data for use in a black oil simulator is that the differential liberation data represent the process occurring in the reservoir and the flash data represent production to stock-tank conditions.  Thus, for use in the simulator, the differential liberation data should be corrected to flash values at field separation conditions.  This procedure is described in several standard reservoir engineering texts including Amyx, Bass, and Whiting (1960).


Sensitivity Studies and Oil-in-Place Calculations

Accurate simulation results are dependent on having high quality data on a large number of reservoir parameters.  Much of this data may be of questionable accuracy or even missing for any given study.  Also, it is generally not possible to predict "a priori" which parameters will control model performance.

One- technique that is frequently used to help guide the data gathering effort and to allocate the data collection time to the critical parameters, is to use the simulation model to do sensitivity analyses on selected parameters.  By varying each of several selected parameters over a reasonable range of uncertainty and observing the effect on simulator performance, the critical parameters controlling performance can be identified.  Further efforts to gather better data should be concentrated on these critical parameters.

Some estimate of oil-in-place, either by volumetric or material balance calculations, should be made before beginning any field-wide simulation study.  This independent oil-in-place calculation provides a check on the simulator input data and reservoir description.

Also, in a larger study, the material balance calculation will provide a check on the consistency of the pressure, production, and fluid PVT data.  If these data cannot give a reasonably consistent material balance calculation, then proceeding to an expensive simulation study probably is not justified until the inconsistency in the data is corrected or additional data are obtained.


History Matching

The objective of the history match is to reproduce with the simulator the actual reservoir performance.  This is achieved by manipulating two fundamental processes that are controllable during history matching: the quantity and distribution of fluid within the system; and the movement of fluid within the system.  These processes are manipulated by adjusting input data within reasonable limits of conditions existing in the field until a minimal difference remains between the historical data and the simulator calculations at the same point in time.

Thus, history matching is the process of determining the values of poorly known or unknown physical parameters which are needed as input to the mathematical reservoir model.  Much, if not most, of the physically measurable information used in the simulator is based on incomplete or inaccurate field measurements.  The reliability of this information and its consistency is improved by using the simulator to model the performance history of the reservoir.  Values of the physical parameters are adjusted within reasonable limits determined by geological and engineering judgment until the simulator calculated results match the observed performance data.  Geological input can be extremely valuable in guiding this history matching effort.  When an acceptable history match is found, the engineer can proceed to the prediction stage of the study.

As can be noted from the above discussion, history matching is a qualitative procedure.  The reliability of a history match depends, in large part, on the knowledge and experience of the individual performing the simulation.  A common and legitimate criticism of history matching results is that the set of physical parameters resulting from the history matching work is not necessarily unique.  It is possible to find another set of parameters that provide as good a match to the reservoir history as-the accepted set, yet the two sets of data may yield substantially different performance predictions.  Consequently, it is worthwhile to update history matches periodically using recently obtained data in order to refine the accepted set of parameters as well as validate or correct the projected reservoir behavior.  Obtaining an accurate reservoir description at the start of the study will minimize the amount of parameter adjustment required during history matching.

Perhaps the most pervasive source of error in the history matching process is the lack of reliable field data.  There are many reasons why reported field data may be unreliable.  Furthermore, the amount of data is usually limited.  Thus, the history match may characterize the reported data, but the reported data may not characterize the reservoir.

Another source of error arises when the derivatives in the mathematical formulation of the model are replaced by finite differences.  This error is the truncation error called numerical dispersion.  It can cause a correct set of parameters to yield incorrect results, such as predicting premature water breakthrough.  The non-uniqueness of parameter sets, the inaccuracy or incompleteness of field data, and the presence of truncation errors are the most typical problems encountered during the history matching process.  The engineer should be aware that these problems exist and can cause inexact performance projections.  Because of the uniqueness problems, results from any reservoir simulation should be judged critically as to their "reasonableness" in the light of experience with the type of reservoir, the area, and the production systems being used in the field.


Prediction Runs

After a satisfactory history match of field performance is obtained with the simulator, prediction runs can be made.  A number of alternative field operations or development scenarios can be evaluated and compared in a short period of time to optimize future reservoir management planning for the field.  Because there is no field history to use for comparison with the simulation results for a prediction run, it is even more important that critical engineering judgment and experience be applied to the results using the test of "reasonableness".

Less accuracy in the simulation predictions should be expected when the prediction runs are simulating operations under a different flow system than that of the history matching work.  A common example of this is history matching primary production performance (dominantly a gas/oil flow system) and then making predictions of performance under waterflood operation (dominantly a water/oil flow-system).  The reason for this is that some uncertain reservoir parameters may have little effect on performance under flow in a gas/oil system but may be of critical importance in a water/oil system.  This same caution applies in the case of simulator predictions of enhanced oil recovery process performance.  These potential problems can be minimized by obtaining the best possible reservoir description prior to the simulation work.
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�ABSTRACT

Numerical dispersion can cause a smearing of otherwise sharp saturation fronts.  The usual methods of estimating the magnitude of the smearing effect in one-dimension are shown to apply in two and three dimensions as well.  Besides the smearing effect, numerical dispersion affects the finite-difference  solution of a multidimensional flow problem by rotating the principal flow axes.  A method for determining the importance of the rotation effect is discussed. Numerical illustrations are appended.
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INTRODUCTION

Most reservoir simulation models available today obtain solutions to fluid flow equations--usually nonlinear partial differential equations--by replacing derivatives with finite-difference approximations.1-2  The use of these approximations, which are derived by manipulating Taylor's series, introduces an error known as truncation error.  For many problems the error is small and the approximate solutions of the subsequent finite-difference equations are sufficiently accurate for engineering purposes.

However, truncation error can cause significant solution inaccuracies for certain types of problems.  Examples of these problems1 include miscible floods and immiscible floods in which viscous forces are much larger than capillary forces.  The most common example of the latter is the Buckley-Leverett problem with capillary pressure set to zero.

A relatively simple equation which exhibits the effect of truncation error is the one-dimensional convection-dispersion equation:

	� EMBED Equation.2  ���	1

where the constant coefficients (, D, and v are porosity, the dispersion coefficient, and velocity, respectively.  The solution, S, of Equation 1 may be saturation or concentration.  The finite-difference solution of Equation 1 introduces truncation error which can smear an otherwise sharp saturation front as if additional physical dispersion was present.  This smearing, which is caused by truncating Taylor's series, is often called numerical dispersion or numerical diffusion.

Truncation error studies3-8 often begin with a one-dimensional convection-dispersion equation, such as Equation 1, after tile space and time coordinates (x and t)  are redefined to remove two of the three constant coefficients ((, D and v).  It appears that the effects of numerical dispersion in more than one-dimension have not been studied analytically, though attempts to minimize numerical dispersion in two dimensions--particularly the grid orientation effect--based on numerical analyses do exist.6-10  The purpose of this work is to analytically examine the effects of numerical dispersion on the multidimensional convection-dispersion equation in order to obtain a better understanding of the role numerical dispersion plays in more than one dimension.

Analytical expressions for multidimensional numerical dispersion (MND) coefficients will be derived by performing a truncation  error analysis on the three-dimensional convection-dispersion equation.  This analysis will be analogous to that used by Lantz in one dimension.3  The significance of the results will then be examined.  It will be concluded that MND not only changes the magnitude of the elements of the dispersion tensor, but also rotates the principal flow axes.  Expressions for the angles of rotation associated with two-dimensional  problems will be presented.  It will be shown that reducing time step size can eliminate the rotation effect.


TRUNCATION ERROR ANALYSIS

The three-dimensional convection-dispersion equation has the form

	� EMBED Equation.2  ���	2

where  {Xi:  i = 1,  2,  3}  denote Cartesian coordinates and � EMBED Equation.2  ��� is the ijth element of the dispersion tensor.  A discussion of the physical significance of Equation 2 in terms of hydrodynamic dispersion11  is presented in Appendix A.  It is usually assumed that the principal values of the dispersion tensor are known and that the coordinate system is aligned along the orthogonal principal axes.  This assumption is implicit, for example, whenever cross-derivative terms (such as � EMBED Equation.2  ���) are not included in fluid flow equations.  Thus almost all reservoir simulators assume the principal axes have been chosen.  Given this assumption, Equation (2) simplifies to

	� EMBED Equation.2  ���	3

where (x, y, z) have replaced (x1, x2, x3) and the non-zero elements of the dispersion tensor are

	� EMBED Equation.2  ���	3a

The question of interest here is:  what is the effect of multidimensional numerical dispersion on the solution of the convection-dispersion equation when it is solved using finite-differences?  The answer to this question is the subject of the present work.  A detailed analysis of the simpler convection-dispersion equation,  Equation 3, will be presented.  Results for the more general equation, Equation 2, are summarized.


Explicit Backward-Difference Representation

The explicit backward-difference representation of  Equation 3 is obtained by replacing the time derivative with

	� EMBED Equation.2  ���	4

and the first-order spatial derivatives with

	� EMBED Equation.2  ���	5

Expressions analogous to Equation 5 are written for (s/(y and (s/(z.  All of these approximations are obtained by manipulating Taylor's series.  The second-order spatial derivatives are replaced by
	� EMBED Equation.2  ���	6

and similarly for � EMBED Equation.2  ���.  The finite-difference representation of Equation 3 in terms of the above approximations is

	� EMBED Equation.2  ���	7

What is the truncation error that results when Equation 7 is solved instead of Equation 3?

Recall that the truncation error (T of a finite difference approximation is defined as

	(T  =  LDS  -  LS	8

where LDS represents the difference form of the equation (Equation 7) and LS denotes the differential form (Equation 3).  Before substituting Equations 3 and 7 into Equation 8,  it is customary to re-express the finite-difference terms as Taylor's series expansions.  In this case it is sufficient to keep terms only up to second order in the increments.  Thus the terms (� EMBED Equation.2  ��� are equivalent to this order of approximation.  The remaining finite-difference terms are given by

	� EMBED Equation.2  ���	9

	� EMBED Equation.2  ���	10

with similar expressions for [S(x, y, z, t)  -  S(x, y - (y,  z, t)] and [S(x, y, z, t) - S (x, y, z - (z, t)].  The difference form LDS becomes

	� EMBED Equation.2  ���	11

while the differential form LS is

	� EMBED Equation.2  ���	12

The truncation error (T is the difference between Equations 11 and 12, hence

	� EMBED Equation.2  ���	13

This result can be converted into a more revealing form by rewriting the � EMBED Equation.2  ��� term as follows.
First differentiate Equation 3 with respect to t:

	� EMBED Equation.2  ���	14

Next assume that the third-order derivatives such as � EMBED Equation.2  ��� are negligible.  This leaves only the second-order derivative terms.  Expressions for these derivatives are obtained by differentiating Equation 3 with respect to x, y, and z separately:

	� EMBED Equation.2  ���	15

and similarly for y and z.  Again the third order derivatives like � EMBED Equation.2  ��� are neglected.  Using the subsequent relations in Equation 13 yields the following expression for the truncation error:

	� EMBED Equation.2  ���	16

Equation 16 is simplified by rearranging terms to yield

	� EMBED Equation.2  ���	17

The effort expended in obtaining Equation 17 is justified by first noting that Equation 8 can be written as

	LDS  =  LS  +  (T	18

In other words, the equation solved numerically (LDS) is equivalent to the original equation (LS) plus the truncation error ((T).  The form of (T in Equation 17 was derived so that the combination LS +  (T could   be expressed in the following relatively simple form:

LDS  =  LS + (T

	� EMBED Equation.2  ���	19

The solution of LDS  =  0 is the desired solution; thus the differential equation corresponding to the numerical  solution of LDS  =  0 is

	� EMBED Equation.2  ���	20

A check of the validity of Equation 20 is to reduce it to the simpler one-dimensional form.  This is accomplished by setting

	vz  =  Dz  =  0	21a

and
	vy  =  Dy  =  0	21b

in Equation (20).  The result is

	� EMBED Equation.2  ���	22

which corresponds to Lantz’s result3.

The above truncation-error analysis shows that by solving the difference equation LDS =  0, the resulting solution corresponds to Equation 20, not to the original equation (Equation 3).  The difference is due to (T  and appears as an alteration of the dispersion tensor.  This is clearly shown when the above analysis is performed on the more general Equation 2.  The result is

	� EMBED Equation.2  ���	23

where the total dispersion {Dij} is given by
	� EMBED Equation.2  ���	24
The quantity � EMBED Equation.2  ��� is known as numerical dispersion since it is due to truncation error, and its values for different finite-difference representations are summarized in Table 1.  


TABLE 1  --  SUMMARY OF MND RESULTS

Difference Technique�Numerical Dispersion Tensor (DNUM)��Space�Time�ijth Element��Backward - Difference�Explicit�� EMBED Equation.2  ���������Centered - Difference�Explicit�� EMBED Equation.2  ���������Backward - Difference�Implicit�� EMBED Equation.2  ���������Centered - Difference�Implicit�� EMBED Equation.2  �����

The form of Equation 24, i.e. physical and numerical dispersion are additive, comes from the form of Equation 20 and the definition of � EMBED Equation.2  ���.  Note that the analysis leading to Equation 23 employs second-order correct finite-difference approximations for all of the second-order derivatives.

INTERPRETATION OF RESULTS

Simulators using convection-dispersion type equations usually treat the coordinate system as if it was aligned along the principal axes.  This assumption lets the programmer formulate flow equations (such as Equation 3) which use diagonal tensors, thereby removing all cross-derivative terms and simplifying the subsequent programming effort.  The presence of numerical dispersion in Equation 20 essentially "puts back" the cross-derivative terms that were eliminated from Equation 2 by assuming the dispersion tensor was diagonal.  Two questions naturally arise:  What is the physical significance of this effect?  And how important is it?

The answer to the first question comes in two parts.  The first is provided by examining Darcy's law in anisotropic media11:

	� EMBED Equation.2  ���	25

where � EMBED Equation.2  ��� is the permeability tensor, ( is specific gravity, ( is  viscosity, � EMBED Equation.2  ��� is specific discharge (flow rate), and ( is the piezometric head (also referred to as a potential function).  In three-dimensions Equation 25 has the form

	� EMBED Equation.2  ���	26a

	� EMBED Equation.2  ���	26b

and

	� EMBED Equation.2  ���	26c

where the primed coordinates (x', y’, z') have replaced (x1, x2, x3).  Suppose that the permeability tensor is diagonal in the (x, y, z) system.  Equations 26 become

	� EMBED Equation.2  ���	27a

	� EMBED Equation.2  ���	27b

	� EMBED Equation.2  ���	27c

which is the form of Darcy's law used most often in reservoir simulators.  In the (x, y, z) system each component of the flow rate depends only on the potential gradient in its direction of flow.  On the other hand, in the (x', y', z') system the flow rate in any given direction depends not only on the potential gradient in that direction, but also on the potential gradients in directions transverse (perpendicular) to the given direction. Since numerical dispersion adds non-zero off-diagonal elements to the dispersion tensor, one effect of numerical dispersion is to make the flow rate  components depend on transverse as well as parallel potential gradients.  This can alter the direction of fluid flow and affect such physically important parameters as breakthrough time and sweep.

Besides this rotation effect on � EMBED Equation.2  ���, it is clear from Equation 24 that numerical dispersion also alters the magnitude of the dispersion coefficients.  This effect has been studied in one-dimension by Lantz3, and can be easily calculated using the formulae in Table 1.  Based on these observations it is concluded that multidimensional numerical dispersion has two effects:

a)	rotation of the fluid flow direction, and

b)	alteration of the magnitude of dispersion coefficients.

Are these effects important?

Effect b can be estimated using Table 1 and, based on comparisons of the calculated numerical dispersion with the physical dispersion, the determination of the importance of effect b is straightforward.

Determination of the importance of the rotation effect, effect a, is not so easy.  This will now be considered.


Principal Axis Transformation

Recall that our interest is in solving an equation of the form

	� EMBED Equation.2  ���	28

where N is the number of spatial dimensions and xi refers to the ith Cartesian coordinate.  Unfortunately existing finite-difference formulations of Equation 28 yield results that correspond to equations like

	� EMBED Equation.2  ���	29

where the modified dispersion tensor � EMBED Equation.2  ��� is given by

	� EMBED Equation.2  ���	30

with � EMBED Equation.2  ��� the Kronecker delta.  One way to compare Equations 28 and 29 is to diagonalize the tensor � EMBED Equation.2  ���.  The diagonalization--which is achieved by a principal axis transformation--gives

	� EMBED Equation.2  ���	31

where the tensor � EMBED Equation.2  ��� is a diagonal N x N matrix whose  non-zero elements are the eigenvalues (() of

	� EMBED Equation.2  ���	32


with I the identity matrix.  The position vectors (x, y) and velocities (v, V) are related by

	� EMBED Equation.2  ���	33

and
	� EMBED Equation.2  ���	34

where � EMBED Equation.2  ��� is an orthogonal matrix composed of the orthonormal eigenvectors a of

	� EMBED Equation.2  ���	35

Equations 28 and 31 differ in two ways:  the coordinate axes of their respective coordinate Systems do not coincide, and the dispersion tensors � EMBED Equation.2  ��� are not the same though they are both diagonal.  If the coordinate axes of the coordinate systems almost coincide, then the rotation effect is negligible; in this case the magnitude effect is comparable to effect (b) of the previous section and can be readily estimated.  On the other hand, if the coordinate systems are quite different, then the rotation effect due to numerical dispersion is no longer negligible and steps to decrease the rotation--such as using a finer grid and/or smaller time steps--should be considered.  Thus a measure of the importance of the rotation effect is to determine how much  the coordinate  systems  (x1, x2, x3) and (y1,  Y2, Y3)  differ.  This requires determining the matrix � EMBED Equation.2  ���, which is done for the two-dimensional case in the next section.  Since the three-dimensional case is not as common, it will not be developed here.


Two-Dimensional Case

The. solution of the two-dimensional  (N = 2) convection-dispersion equation is desired.  It is assumed that the components (v1, v2) of the velocity v are known and that the physical dispersion values d1 and d2 are principal values, that is � EMBED Equation.2  ���.  The finite-difference solution of this problem corresponds to a tensor with the ijth element given by

	� EMBED Equation.2  ���	36

where

	� EMBED Equation.2  ���	37

for I  (  j, and (ii depends on the solution method used (Table 1).

The diagonalized tensor � EMBED Equation.2  ��� is found using Equation 32, thus

	� EMBED Equation.2  ���	38
or

	� EMBED Equation.2  ���	39

where

	d11  =  d1  +   (11  ,	40a

	d22  =  d2  +  (22	40b

The characteristic equation is 

	(d11 -()(d22 -()  -  � EMBED Equation.2  ���	41

where the relation  (ij  =  (ji  has been used.  Solving Equation 41 gives the two eigenvalues:

	� EMBED Equation.2  ���	42

The transformation matrix � EMBED Equation.2  ��� is composed of orthonormal eigenvectors which are determined from Equation 35:  thus

	� EMBED Equation.2  ���	43

Details of the above calculation are presented in Appendix B.  The diagonalized tensor � EMBED Equation.2  ��� has the form

	� EMBED Equation.2  ���	44

and the new coordinate system (y1) y2) is related to the original (x1, x2) by Equation 33, namely

	� EMBED Equation.2  ���	45

Observe that an angle ( can be associated with the linear transformation, Equation 45, by defining

	� EMBED Equation.2  ���	46a

and hence

	� EMBED Equation.2  ���	46b

The dependence of ( on the physical dispersion � EMBED Equation.2  ��� and original velocity v is made explicit by combining Equations 43 and 46a to find

	� EMBED Equation.2  ���	47

The meaning of Equations 46 and 47 is that the finite-difference results correspond to a coordinate system which has been rotated by an angle relative to the original coordinate system (Fig. 1).

FIGURE 1  --  ROTATION OF PRINCIPAL AXES

� EMBED MSDraw.1.01  ���

Rotation of principal axes due to multidimensional numerical dispersion.  The solid axes are the principal axes of the original system; the dashed Axes are the principal axes of the rotated system; and ( is the angle of rotation.



Equation 47 can be written in a more transparent form by substituting Equation 42 into Equation 47 and simplifying.  The result is

	� EMBED Equation.2  ���	48

where the dimensionless quantity B is defined as

	� EMBED Equation.2  ���	49

The "sign ((12)" factor depends on the solution procedure in time (implicit implies sign ((12)  =  +1, and explicit implies sign ((12)  = -1).  For the implicit case ( ( 0 whereas the explicit case yields� ( ( 0.  Bearing this in mind, let us consider the explicit case more closely.  Equation 48 becomes

	� EMBED Equation.2  ���	50

with the subscript E denoting "explicit" and

	� EMBED Equation.2  ���	51

If d22  (  d11, then R"  (  2 and the smallest value of  (E  is 45º.  Thus it is clear that the axes and grid should be such that d11  >  d22 in order to get values of (E less than 45º (minimize the rotation effect).

Assuming that d11 > d22 gives 

	� EMBED Equation.2  ���	52

where

	� EMBED Equation.2  ���	53


FIGURE 2
ROTATION ANGLE (E AS A FUNCTION OF THE DIMENSIONLESS PARAMETER B
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�A plot of Equation 52 is presented in Fig. 2.  Observe that as B increases the rotation angle goes to zero and the rotation effect disappears.  This is the desired situation.  Thus the condition which should be achieved is

	� EMBED Equation.2  ���	54


A means of doing this for any solution technique is to let the time step size decrease.  If this is not practical, then an estimate of the rotation effect can be made by using Table 1, Equation 49 and Fig. 2 to determine (E (recall that the implicit angle (i  is just minus the explicit angle (E).

Data for an illustrative example are given in Table 2.  In Case A the rotation angle is very large and a decrease in time step size is attempted.  Case B shows that the smaller time step size greatly reduces the rotation effect.  Decreasing the time step size even further in Case C virtually eliminates the rotation effect.  For practical purposes Case B would be best since the rotation effect is small (<10º) for a reasonable time step size (0.01 day).  Additional examples are presented in Appendix C.


TABLE 2
AN EXAMPLE OF MND - INDUCED ROTATION

SOLUTION TECHNIQUE:  EXPLICIT CENTERED - DIFFERENCE 

	PARAMETERS

Physical :	d1	=	0.2 ft2/day
	d2	=	0.02 ft2/day
	v1	=	1.0 ft/day
	v2	=	1.0 ft/day
	(	=	0.2
	
Case A:	Numerical:	(t	=	0.1 Day
	B	=	0.72
	Rotation Angle:	(E	(	35º
	
Case B:	Numerical:	(t	=	0.01 Day
	B	=	7.2
	Rotation Angle:	(E	=	7.8º
	
Case C:	Numerical:	(t	=	0.001 Day
	B	=	72.0
	Rotation Angle:	(E 	=	0.8º


CONCLUSIONS

It has been known for some time that numerical dispersion associated with the finite-difference solution of fluid flow equations can cause a smearing of otherwise sharp saturation fronts.  Smeared saturation fronts can significantly alter calculated quantities which are of interest in reservoir studies.  For example, numerical dispersion can result in calculated breakthrough times that are premature.  A related problem is the premature increase of the calculated water-oil ratio.  The usual. methods of estimating the magnitude of the smearing effect in one-dimension were shown to apply in two and three-dimensions as well.

Besides the smearing effect, numerical  dispersion affects the finite-difference solution in yet another way.  In particular, if a multi-dimensional (areal, cross-sectional, or three-dimensional) flow problem is being solved with finite-difference techniques, the presence of numerical dispersion can rotate the principal flow axes.  A method for determining the importance of the rotation effect has been discussed.  It was shown that decreasing the time step size can largely minimize the rotation effect in multi-dimensional studies.


NOMENCLATURE

Scalars

B	dimensionless (N=2) factor  =  ((d11  -  d22)/(12(
BC	Bear’s11 channel conductance
D	dispersion coefficient (N=1)
Dx, Dy, Dz	principal values of N=3 physical dispersion tensor
d1, d2	principal values of N=2 physical dispersion tensor
d11	d1 + (11
d22	d2 +  (22
LDS	difference form of equation
LS	differential form of equation
N	number of spatial dimensions
R	exact front location for radial flow example
S, C	saturation, concentration
t	time coordinate
vr	radial velocity of radial flow example
x, y, z	spatial coordinates

Vectors
a	orthonormal eigenvector of � EMBED Equation.2  ���
q	specific discharge (Darcy flow rate)
V, v	velocity vectors; V  =  � EMBED Equation.2  ���  v
V(	Bear's11 velocity vector; v = (V(
x, y	position vectors
�Tensors and Matrices
� EMBED Equation.2  ���	rotation matrix from diagonalizing � EMBED Equation.2  ���
� EMBED Equation.2  ���	total dispersion tensor
� EMBED Equation.2  ���	convective dispersion tensor
� EMBED Equation.2  ���	modified dispersion tensor
� EMBED Equation.2  ���	numerical dispersion tensor
� EMBED Equation.2  ���	physical dispersion tensor
� EMBED Equation.2  ���	Bear's11 total dispersion tensor
� EMBED Equation.2  ���	diagonalized form of � EMBED Equation.2  ���
� EMBED Equation.2  ���	identity matrix
� EMBED Equation.2  ���	permeability tensors
� EMBED Equation.2  ���	Bear's11 molecular diffusion tensor

Greek Symbols
(	specific gravity
(ij	Kronecker delta; (ij  =  1 if i  =  j, and (ij = 0 if i  (  j
(ij	ihth element of N=2 numerical dispersion tensor
(T	truncation error = LDS  -  LS
(	rotation angle for N=2
� EMBED Equation.2  ���	eigenvalues of � EMBED Equation.2  ���
(	viscosity
(	piezometric head
(	porosity
(x, (y, (z	grid block lengths
(t	time step size
� EMBED Equation.2  ���	second order correct difference representation

Subscripts and Superscripts
E	explicit
I	implicit
i, j, k	denote Cartesian coordinates with values ranging from 1 to N
x, y, z	Cartesian coordinate system
1, 2, 3	Cartesian coordinate system
� EMBED Equation.2  ���	Cartesian coordinate system
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�APPENDIX A  --  PHYSICAL DISPERSION


Bear's11  dispersion equation at low velocities (Sec. 10.4) can be written as

	� EMBED Equation.2  ���	A-1

where C is concentration, � EMBED Equation.2  ���is the jth component of velocity, and � EMBED Equation.2  ��� is the jkth element of the dispersion tensor.  The elements of the tensor � EMBED Equation.2  ��� may be written as

	� EMBED Equation.2  ���	A-2

where � EMBED Equation.2  ��� represents velocity-dependent convective dispersion and � EMBED Equation.2  ��� represents molecular diffusion in a porous medium.  The quantity � EMBED Equation.2  ��� is related to the permeability tensor by

	� EMBED Equation.2  ���	A-3

where BC is the conductance of a channel.  Substituting Equations A-2 and A-3 in Equation A-1 yields

	� EMBED Equation.2  ���	A-4

where it has been assumed that porosity ( is constant.  If the dispersion term is written as

	� EMBED Equation.2  ���	A-5

and it is assumed that Djk is constant, Equation A-4 can be written as

	� EMBED Equation.2  ���	A-6

where vj is defined by

	� EMBED Equation.2  ���	A-7

Equation A-6 has the form of the three-dimensional convection-dispersion equation (Equation 2).  Observe that Equation A-5 explicitly relates the dispersion tensor to the permeability tensor.

�APPENDIX B - ORTHONORMAL BASIS VECTORS


The basis vectors a satisfy

	� EMBED Equation.2  ���	B-1

where � EMBED Equation.2  ��� is the identity matrix.  Expanding Equation B-1 gives

	� EMBED Equation.2  ���	B-2

	� EMBED Equation.2  ���	B-3

for the eigenvalue� EMBED Equation.2  ���, and

	� EMBED Equation.2  ���	B-4

	� EMBED Equation.2  ���	B-5

for the eigenvalue � EMBED Equation.2  ���  Rearranging Equation B-2 gives

	� EMBED Equation.2  ���	B-6

Equation B-6 and the normalization condition

	� EMBED Equation.2  ���	B-7

provide the two equations which are necessary for determining the components of � EMBED Equation.2  ���: thus

	� EMBED Equation.2  ���	B-8

and

	� EMBED Equation.2  ���	B-9

Similar calculations for a- yield the results

	� EMBED Equation.2  ���	B-10

and

	� EMBED Equation.2  ���	B-11

where the relation

	� EMBED Equation.2  ���	B-12

has been used.  Notice that a+ and a- are orthogonal, i.e.

	� EMBED Equation.2  ���	B-13

thus  a+  and  a- can be used as the orthonormal basis vectors of the transformed space.

�APPENDIX C - NUMERICAL EXAMPLES


The following examples are designed to illustrate the MND effects:  rotation and smearing.  The convection-dispersion equation of interest is

	� EMBED Equation.2  ���	C-1

where d1 and d2 are the physical dispersions:

	� EMBED Equation.2  ���	C-2a

	� EMBED Equation.2  ���	C2-b

Equation C-1 is numerically solved using the implicit backward-difference technique.  Consequently, the elements of the numerical dispersion tensor are found from Table 1 to be

	� EMBED Equation.2  ���	C-3a

	� EMBED Equation.2  ���	C-3b

and

	� EMBED Equation.2  ���	C-3c

The elements of the corresponding modified dispersion tensor are

	� EMBED Equation.2  ���	C-4a

	� EMBED Equation.2  ���	C-4b
and

	� EMBED Equation.2  ���	C-4c

To clearly demonstrate the MND effects it is desirable to simplify the problem as much as possible.  This is accomplished by requiring that there is no physical dispersion and that the front propagates radially from a given point.  For the 10 x 10 grid shown in Fig. 3, the boundary conditions are defined such that fluid flows radially outward from the upper-left-hand corner grid block labeled (I,J)  =  (1,1).  
�FIGURE 3   -   FINITE DIFFERENCE GRID.
FLUID FLOWS RADIALLY OUTWARD FROM BLOCK 1,1

	I	1	2	 3	4	5	6	7	8	9	10
� EMBED MSDraw.1.01  ���



Physical parameters which are consistent with this situation are listed in Table 3.  


TABLE 3  --  PHYSICAL DATA FOR NUMERICAL EXAMPLES

d1 = d2 = 0.0 ft2/day

v1 = 1.0 ft/day

v2 = 1.0 ft/day

( = 1.0

Total Distance in X1 -Direction = 1.8 ft.

Total Distance in X2-Direction = 1.8 ft. 

Total Run Time = 2.0 days



The modified dispersion tensor simplifies to the form

	� EMBED Equation.2  ���	C-5a

	� EMBED Equation.2  ���	C-5b

and

	� EMBED Equation.2  ���	C-5c

where (xi and (x2 are in feet, (t is in days and velocities equal 1 ft/day.

A consequence of these simplifications is that any observed dispersion will be strictly numerical.  The exact front location without dispersion is given by

	� EMBED Equation.2  ���	C-6

where R is the radius (in ft) measured from the node of grid block (1,1) and t is the total elapsed time of fluid flow.  Any difference between the computed front location and that determined by Equation C-6 is due to numerical dispersion.  By specifying the grid block and time step sizes it is possible to use results presented earlier to calculate the effects of numerical dispersion.

Cases A-D of Table 4 summarize the four different examples considered here.  Columns 2-4 of Table 4 specify the input data.  The angle (I is calculated from Equation 48 with sign ((12) = +1 and B is calculated using Equation 49.  The dispersions � EMBED Equation.2  ��� along the principal axes of the coordinate system rotated an angle (I with respect to the x1-axis are calculated from Equation 42.


TABLE 4  --  COMPILATION OF NUMERICAL EXAMPLE RESULTS

--------------Input Data-------------------	-----------------Calculated Results-----------------

	(x1	(x2	  (t	 (I	� EMBED Equation.2  ���	 � EMBED Equation.2  ���	tB*
Case	(Ft)	(Ft)	(Day)	(Degrees)	(ft2/Day)	(Ft2/Day)	(Day)

A**	0.20	0.20	0.2	45	0.3	0.1	1.34
B**	0.20	0.20	0.002	45	0.102	0.100	1.61
C***	0.20	0.095	0.2	38	0.277	0.070	1.33
D***	0.20	0.095	0.002	2	0.101	0.048	1.77
___________________
*	Actual breakthrough  =  1.8 days.
	tB  = time when the saturation at block (NX, NY) is 10 %.  Here NX and NY denote the total number of blocks in the X (x1) and Y (x2) directions respectively.
**	10 x 10 grid
***	10 x 20 grid


�FIGURE 4  --  EFFECT OF TIME STEP SIZE
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Figure 4 shows the location of the S  =  0.1 front for two different time step sizes (Cases A and B).  The curve marked “R” is the exact front location.  It is clear from Fig. 4 that dispersion has smeared the fronts.  Furthermore, reducing the time step size in Case B has substantially reduced the dispersion.  It is not clear from Fig. 4 that dispersion in Case A is larger for the new principal axis which now lies along the diagonal.  This feature is displayed in Fig. 5 where the S = 0.1 front is shown after 0.4 day and after 0.6 day.  As the flow time elapses the front moves farther along the diagonal than along the x1 or x2 axes, indicating  that dispersion is greatest along the diagonal.  The dashed curve in Fig. 5 is a constant radius arc which has been drawn to highlight the effect just described. It should be explicitly noted that no sinks are present to account for the observed anisotropic behavior of the front.



FIGURE 5
PREFERENTIAL FLOW ALONG PRINCIPAL AXIS WITH LARGER DISPERSION
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�The effect of grid block size is depicted in Fig. 6.  Cases C and D exhibit a fluid flow preference into the upper half of the grid.  This is due to a rotation of the principal flow axes such that the larger dispersion ((+) is along an axis which is nearer to the x1  than X2 axis.  In other words, � EMBED Equation.2  ��� is greater than � EMBED Equation.2  ��� and � EMBED Equation.2  ��� is less than 45º.  Observe in Fig. 6b that the portion of the Case D curve near the X2 axis is almost identical to the exact curve.  This is because � EMBED Equation.2  ��� is small and the principal axis corresponding to � EMBED Equation.2  ��� is almost collinear with the x2 axis.

FIGURE 6  --  EFFECT OF GRID BLOCK SIZE.

(A)  TIME STEP = 0.2 DAY
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(B)  TIME STEP  =  0.002 DAY
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How do these MND features affect engineering studies?  Although a quantitative answer would depend on the particular study, it is possible to provide a generally applicable qualitative answer.  Most 2 or 3 dimensional studies are run to determine, among other things, sweep efficiency. Furthermore, the history-match phase of a study will often use breakthrough times as a check of the model.  From the work presented here it can be concluded that the presence of MND can significantly affect breakthrough times.  Column 7 of Table 4 justifies this conclusion.  Consequently a knowledge, even a rough estimate, of MND could aid the engineer when using breakthrough times to evaluate a model.

In addition to affecting breakthrough times, MND can influence sweep efficiency as illustrated in Fig. 7.  By comparing Fig. 7a with Fig. 7b it can be seen that the fluid in Case D flows preferentially towards the upper right hand corner.  Consequently the displacing fluid will appear to sweep the upper half of the grid more than the lower half by the time breakthrough occurs.  This anisotropic sweep pattern is a numerical artifact and does not accurately represent the physical situation being studied.  Calculating rotation angles and modified dispersions can help the engineer avoid misinterpreting results obtained from numerical simulators.


FIGURE 7  --  ALTERATION OF SWEEP BY NUMERICAL DISPERSION
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	S  =  0.4
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�
SI METRIC CONVERSION FACTORS


ft X 3.048* E-01  =  m
day X 1.157407 E-05  =  s
ft/day X 3.527778 E-06  =  m/s
ft2/day X 1.075267 E-06  =  m2/s


�APPENDIX B
An Illustrative Simulation Study
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�INTRODUCTION

An effective reservoir management program is designed to optimize reservoir performance by assuring maximum economic return and recovery over the life of the reservoir.  Such a program requires a continuing process of engineering and geologic study.  Numerical reservoir simulation models provide a powerful tool for analyzing the production history of a reservoir and for predicting future performance under a variety of possible operating methods.  Experience has shown that an accurate reservoir description is essential to the success of any numerical simulation  study and to the development of an effective reservoir management plan1,2.

The mechanics of conducting a numerical simulation of reservoir performance are essentially the same for either a carbonate or sandstone reservoir.  The most important difference in modeling these two general reservoir types involves the conceptual approach required to describe the lateral and vertical continuity of flow units within the reservoir.  The continuity and internal characteristics of sandstones are controlled primarily by the original depositional system and environment, with usually only minor post-depositional  changes.  In carbonates, the distribution of porosity and permeability and the continuity of reservoir-quality units can be determined either by the original depositional environment, by post-depositional diagenetic changes, or, most commonly, by a combination of these factors.

Carbonate reservoir rock types are formed in a variety of depositional settings and show great diversity in size and form, ranging from reefs covering one or two square kilometers to extensive carbonate banks covering thousands of square kilometers3.  The common characteristic of carbonate reservoirs is the extreme heterogeneity of porosity types and permeability distribution which results from the complex interaction of the physical, biological, and chemical processes that form these rocks.  In addition, carbonate rocks are particularly susceptible to post-depositional diagenetic changes.  Some of the more important diagenetic processes which act to alter the original rock texture in carbonates are dolomitization, recrystallization, cementation, and leaching or solution.

A reservoir study4 conducted by Cities Service Company on a large carbonate reservoir in West Texas provides an excellent example of the approach and the type of data needed to support a numerical simulation study for improved reservoir management.  The West Seminole field �(Fig. 1) produces from the San Andres Formation at an average depth of approximately 5,100 ft (1550 m).  

FIGURE 1  --  FIELD LOCATION MAP

� EMBED MSDraw.1.01  ���

Fig. 2A shows the general structural configuration of the reservoir, which consists of a large main dome with a smaller dome structure to the east.  A large primary gas cap, shown schematically in Fig. 2B, covers most of the field area.  A summary of basic reservoir and fluid data is presented in Table 1.
�FIGURE 2a  --  Structure map on top of porosity.
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FIGURE 2b  --  Schematic cross section through the field

EAST-WEST CROSS SECTION
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TABLE 1  --  WEST SEMINOLE FIELD RESERVOIR AND FLUID DATA

Productive Surface Area, Acres (ha)	2782	(1126)
Average Producing Depth, Ft (m)	5112	(1558)
Average Gross Oil Zone Thickness, Ft (m)	140	(43)
Average Gross Gas Cap Thickness, Ft (m)	111	(34)
Estimated Original Oil in Place, Million STB (106 stock-tank m3)	172	(27.3)
Estimated Original Free Gas In Place, Billion SCF (109 std  m3)	137	(3.92)
Average Porosity, %	9.9
Average Permeability, MD	9
Average Connate Water Saturation, %	18
Reservoir Temperature, ºF (ºC)	101	(38.3)
Original Reservoir Pressure (Saturated) at 1575 FT
	(480 m) Subsea, Psia (MPa)	2020	(13.93)
Original Solution Gas-Oil Ratio, SCF/STB (std m3 /stock-tank m3)	773	(139)
Oil Gravity, ºAPI (gm/cm3)	34	(0.85)
Oil Viscosity, CP (mPa-s)	0.98	(0.98)
Oil Formation Volume Factor at 2020 Psia
	(13.93 MPa), RB/STB (res m3/stock-tank m3)	1.38		(1.38)

�
The field was discovered in 1948.  During the late 1960's and early 1970's, efforts were made to reduce the pressure decline in the reservoir by re-injection of produced gas into the gas cap and by peripheral water injection.  Neither of these was entirely successful in effecting pressure maintenance.  In the mid-1970's, the decision was made to develop a 40-acre (16.2-ha) five-spot pattern waterflood in the main dome area of the field (Fig. 3).  Twenty-eight infill water injection wells were drilled during 1973-1975.

FIGURE 3  --  FIELD WELL PATTERN AND STUDY AREA DESIGNATIONS.
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Throughout the field's producing life, there had been a question about the extent of vertical  communication within the reservoir, particularly between the oil zone and the overlying gas cap.  This question became a critical operating consideration when the pattern waterflood was proposed.  Significant communication between porosity zones in the oil leg and those in the gas cap could have a drastic effect on waterflood performance through loss of oil to the gas cap, as illustrated schematically in Fig. 4.  To answer this question, Cities Service began to obtain the data necessary to support an extensive reservoir Study.  The overall objective was to develop the most profitable and effective reservoir management program for the West Seminole field.  The following specific objectives and procedures were developed for the work:

	1.	Use all available geologic and engineering data to develop a detailed and accurate reservoir description for this field. 

	2.	Incorporate the reservoir description information into a black oil computer simulation model.  Use the simulator to  verify and further  refine  the reservoir description by history matching the pressure and production data.

	3.	Use  the  history-matched simulation model  to project future reservoir performance under current waterflood operations. 

	4.	Evaluate various alternative operating plans and recommend the most effective reservoir management program for the field. 
�
FIGURE 4  --  SCHEMATIC SHOWING POSSIBLE LOSS OF OIL TO THE GAS CAP.
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RESERVOIR DESCRIPTION

The San Andres is a prolific producing formation found throughout much of west Texas.  The typical San Andres reservoir rock is a heterogeneous carbonate characterized by extreme vertical and lateral variation in porosity and permeability development.  Previous work by Ghauri, et al5 and George and Stiles6 illustrates the efforts made recently to better characterize these complex reservoirs and to develop improved techniques to evaluate and predict their waterflood performance.


Geologic Study

Core data provided the most valuable source of information for developing a geologic description of the field.  All of the 28 infill wells drilled between 1973 and 1975 were cored through most of the reservoir section.  After routine core analysis, 24 of these cores were slabbed and polished. This provided over 6,000 feet (1830 m) of core for geologic study. An extensive geologic evaluation of the West Seminole reservoir7 was conducted using the cores and jogs from these 24 wells.  This work provided a detailed description of the internal anatomy of the reservoir as well as a description of its depositional and diagenetic history.

The producing section in the upper San Andres in West Seminole is contained within some 600 feet (180 m) of carbonate section deposited during an overall regression of the Permian sea at the eastern margin of the Central Basin Platform.  This basin margin was probably a carbonate ramp with depositional patterns similar to those of the Trucial Coast in the Persian Gulf7.  Sediments were most likely deposited on this shelf ramp in a series of facies belts, roughly following bathymetric Contours.

The retreat of the sea was very erratic, with the result that the facies belts migrated up and down this ramp as sea level fluctuated.  This resulted in deposition of a complex interlayering of different carbonate facies.  Two of the larger of these minor transgressions produced field-wide unconformities within the reservoir section.  These unconformities divide the reservoir section into three distinct transgressive-regressive depositional cycles. Each cycle shows a progression upward from a basal, relatively deep water, low energy subtidal fades into a shallower, higher energy shoaling environment.

The cyclic nature of the deposition caused by the erratic sea level fluctuations produced a layered structure in the rocks.  This situation was modified somewhat by post-depositional diagenetic changes.  These changes were both constructive, that is, acting to improve reservoir porosity and permeability (the most important processes here were dolomitization and leaching), and destructive, that is, acting to destroy porosity and permeability (the  most important of these was deposition of anhydrite).

The interpretation of the resulting porosity and permeability distribution was made easier because the types and intensities of diagenetic changes seemed to be closely related to the original depositional facies.  This is not the case in all carbonate reservoirs.  Of particular importance to reservoir performance was the fact that the deep, quiet water fusulinid wackestone facies seemed to be particularly subject to anhydritization.7  As  a result, several thin zones extending across the field were extensively cemented with anhydrite.  These zones formed potential barriers to vertical movement of fluids within the reservoir section.

It was essential to obtain a detailed and accurate correlation of stratigraphic units prior to identifying their porosity and permeability characteristics.  This prevented the cross-correlation of different geologic units which happened to show similar permeability and/or porosity characteristics on logs or in cores.  This  was particularly important when correlating a specific impermeable zone from well to well across the field.

Based on the geologic evaluation, the reservoir section was divided into six major zones, or layers as illustrated in Fig. 5.  The boundaries between layers corresponded to prominent low porosity, low permeability zones which had been extensively cemented with anhydrite.  Thus, the geologic study provided the framework for the reservoir description and was the primary basis for the layering scheme used in the simulation model grid system.

Fig 5.  --  Reservoir layering based on geologic study, log data, and core data.
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�Porosity and Permeability Distribution

Conventional, whole-core analyses were available for over 7,500 feet (2290 m) of core from 44 different wells in the West Seminole field.  All of the core analyses were digitized for computer analysis.  This allowed extensive use of the computer in statistical analysis, plotting, and mapping of the core data.  The core data were used to construct contour maps showing the area distribution of porosity and permeability within each of the six geologically-defined layers. Structure contour and isopach maps were also generated for each layer.

By combining the core data and the geologic reservoir description, the three-dimensional distribution of porosity and permeability in the reservoir could be described in detail.  Fig. 6 illustrates the permeability distribution for an east-west cross-section through the northern portion of the field.  The cross-section shows the extreme lateral and vertical variations in reservoir quality characteristic of the San Andres.

�
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No consistent relationship between porosity and permeability development was observed in the core data.  Core samples with fairly low porosity often  showed  excellent  permeability,  and  vice versa.  It is fairly common to find such a lack of correlation between porosity and permeability in carbonate reservoirs.  This is often the result of selective leaching of fossil fragments or solution of material creating moldic or vuggy porosity that is not interconnected to form a continuous flow system.  The correlation of porosity with permeability was much better within individual reservoir zones identified in the geologic study.

The West Seminole reservoir does exhibit a distinctly layered structure.  Lateral pay continuity within the primary waterflood zone was observed to be much better than is normally seen in the San Andres.  Fig. 7 shows the permeability stratification and correlation of seven sub-zones within one of the six major layers.  Fig. 7 also illustrates the general trend of an overall thickening of the entire reservoir section to the south (paleo-seaward direction) accompanied by a general decrease in porosity and permeability throughout the section.


Fig. 7  --  Permeability stratification within the main waterflood zone.
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�Pressure Transient Work

Extensive pressure transient testing was conducted in the reservoir.  A major program consisting of long-term buildup tests and interference tests was conducted between Nov. 1975 and July 19764.  This program involved 11 separate well pairs, in three groups, distributed across the field.  The tests were conducted using sensitive Hewlett-Packard quartz crystal pressure gauges and surface recording equipment.

The primary purposes of this program were 
	1.	to identify any matrix directional permeability, fracture systems, or channeling which may be controlling fluid movement in the reservoir, 
	2.	to help assess the degree of stratification and the effective vertical communication between porosity zones within the reservoir section, and 
	3	to evaluate pay continuity, particularly between injectors and producers, at the current pattern well spacing.

The interference testing revealed no evidence of channeling or obvious fracture flow systems in the reservoir.  In addition, no fieldwide preferential flow direction was indicated by the testing.

There was considerable evidence in the test data indicating that the reservoir acts as a distinctly layered system with restricted vertical communication between layers.  Static pressure differences of 200-250 psi (1.4-1.7 MPa), after adjusting to datum, were noted between adjacent porosity zones in offsetting wells.  A series of drillstem tests conducted in one of the infill wells showed similar pressure differentials between various zones within the reservoir section.

An attempt was made to correlate the permeability-thickness product (kh) determined from falloff tests with kh values calculated from core data in the same wells.  The kh calculated using arithmetically averaged core permeability data seemed to compare better with pressure transient data than did kh values calculated using geometrically averaged core permeabilities.  The results of this comparison are presented in Table 2.  Thus, arithmetically averaged core permeability data were judged to be more representative of the effective reservoir permeability, and were used in the simulation model where permeability data from pressure transient tests were not available.


TABLE 2
COMPARISON OF PRESSURE TRANSIENT Kh WITH Kh DERIVED FROM CORE DATA

	FALLOFF	CORE Kh	CORE Kh
	TEST Kh	ARITHMETIC MEAN	GEOMETRIC MEAN
WELL	(md-ft) 	(md-m)	(md-ft)	(md-m)	(md-ft)	(md-m)

305W	1094	(333)	910	(277)	242	( 74)
306W	1008	(307)	732	(223)	312	( 95)
307W	533	(162)	637	(194)	355	(108)
609W	1306	(398)	1008	(307)	265	( 81)
610W	944	(288)	446	(136)	193	( 59)
611W	599	(183)	467	(142)	197	( 60)
707W	889	(271)	868	(265)	335	(102)


Native State Core Tests

In addition to the extensive amount of conventional coring done in the West Seminole field, one native-state core was taken.  The core was cut using lease crude as the coring fluid.  The core samples were preserved at the drill site to minimize exposure to oxygen and retain original reservoir wettability conditions as closely as possible.  The native state core samples were used for steady-state relative permeability  testing to obtain flow characteristics of the reservoir rock.


SIMULATION MODEL

The next phase of the study was to model the reservoir using a three-dimensional, three-phase, black oil reservoir simulator.  The specific numerical simulator used was the Black Oil  Model developed by INTERCOMP Resource Development and Engineering, Inc.  The Study area for the simulation work consisted of only the main dome portion of the reservoir (Fig. 3).  The simulation study was concerned primarily with predicting response in the main dome under pattern waterflood operations.  A no-flow boundary, located in the structural saddle between the main dome and east dome, formed the eastern border of the study area.  A distinct difference in recorded field pressure history was observed between wells in the main dome and those in the east dome.  This information, along with well completion data, was used to approximate the location of the no-flow boundary.


Model Grid Configuration

It was necessary to use a three-dimensional grid system in the model since one of the major objectives of the simulation work was to evaluate the sensitivity of reservoir response to vertical communication within the reservoir section.  The model grid chosen incorporated the six layers developed from the geologic work.  With this much resolution in the vertical dimension, it was necessary to use a relatively coarse area grid to keep computer run time within reasonable limits. The area grid chosen is shown in Fig. 8.  It consisted of 288 areal blocks of about 10 acres (4 ha) each.  Thus, the complete model grid was composed of 1,728 blocks.

Fig. 8  --  Areal grid used in the simulation model
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The porosity and permeability data for each of the six layers were digitized from computer contour maps.  The model grid was chosen so that the boundaries between layers coincided with the location of potential vertical flow barrier units identified in the geologic study.  The strength of the flow barriers could then be controlled mathematically in the model by varying the vertical transmissibility across the block boundaries.  This allowed study of the sensitivity of reservoir response to variations in the strength and distribution of these vertical flow barriers.


Grid Size Sensitivity

Considerable time was spent evaluating the effects of grid block size on simulator performance.  There was concern that the relatively coarse grid used in the model might introduce serious errors into the simulator performance.

The primary concern was that the coarse areal grid might introduce potentially large errors through numerical dispersion effects.  The pattern waterflood area was modeled with wells in alternate areal grid blocks.  When further infill drilling was investigated, there would be a well in every area block in some parts of the model.  A second point of concern was that a fairly distinct permeability stratification was observed within the oil zone (see Fig. 7).  The use of grid blocks approximately 50 feet (15 m) thick averaged out much of this layering effect. Ignoring this layering could produce errors in simulating waterflood performance.

Both numerical dispersion and layering effects were accounted for by using pseudo relative permeability curves in the model.  The pseudo relative permeability curves were constructed using the technique developed by Kyte Berry8.  This technique produces pseudo functions which account for both layering and numerical dispersion in a coarse grid model.

The pseudo relative permeability curves were tested by comparing the performance of a fine-grid, single-pattern model with the performance of a model with coarse grids such as used in the field-scale study.  The fine and coarse grid models are shown in Fig. 9.  The original rock relative permeability curves were used in the fine-grid model, and the pseudo curves were used in the coarse-grid model.  Waterflood performance was tested first considering the existing normal five-spot pattern, and again considering the effects of infill drilling to an inverted nine-spot pattern development.  In both cases, the waterflood performance of the actual model grid using the pseudo curves matched the performance of the fine-grid pattern model using the rock relative permeability curves.
�Fig. 9  --  Simulation model grid systems used in the grid size sensitivity study.
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HISTORY MATCHING

After the reservoir description data had been digitized and incorporated into the model grid system, the simulator was used to history-match field performance.  Two major objectives were set out for this phase of the work:

	1.	Verify and further refine the reservoir description by history-matching the field pressure and production performance. 

	2.	Evaluate the sensitivity of reservoir performance to changes in the strength and distribution of barriers to vertical flow of fluids within the reservoir section.


Pressure and Production Performance

Both field and model performance indicated that the principal producing mechanism in this reservoir was a solution gas drive with some assistance from expansion of the gas cap.  The effects of gas cap expansion were felt primarily in those wells located down-dip from the gas zones and near the edges of the field.  Very little or no effect of any water drive was observed.

The history-matching work concentrated on matching the overall field performance.  Reliable individual well data were not generally available over the entire field life for every well.  Individual well data were matched wherever available and considered to be valid, but the most emphasis was given to matching overall field performance.

Field-wide pressure surveys were taken on a six-month basis for the early years of field life.  Later, they were taken on an annual basis, and still later replaced by key-well surveys in some years.  The pressure data were generally very consistent and considered valid, although individual well points were often missing or obviously in error due to gauge failures, etc.

The overall field performance match was further complicated by the problem of excessive free gas production, especially during early field life.  This was primarily a result of gas channeling due to poor completions.  Free gas production from the gas cap has been and continues to be a problem in the West Seminole field.  No accurate records of actual gas production are available for the first six years.  This is the period prior to construction of a gasoline plant in the field.  The history-matching work indicated  that 8 to 10 BCF (230x106 m to 285X106  m3) of gas-cap gas, over and above the reported production, had to have been produced during the first six years of field life in order to match the field pressure decline.  This excess gas was presumably flared during the period prior to construction of the gas plant.  Early records do contain reports of extensive flaring of gas during this period.

Only minor adjustments had to be made to the original porosity and permeability distributions  to match individual well pressure and production performance.  This excellent initial performance match is undoubtedly a result of the extensive amount of core data available and the effort spent in obtaining an accurate reservoir description prior to the simulation.  Most of the adjustments needed were in an area covering about 300 acres (120 ha) in the northeastern corner of the field.  The adjustments consisted of small increases in hydrocarbon pore volume and horizontal transmissibilities necessary to match the pressure performance of six wells in this area of the field.

Another significant aspect of the history matching work was to quantify the approximate effective injection into the peripheral water injection wells.  The cumulative effective injection into the peripheral wells had to be reduced to 15 to 20% of total  injection to match the observed reservoir pressure response.  The inability of the peripheral water injection to produce any significant reservoir response was due to two major factors:

	1.	The peripheral injection wells were generally completed well below the water-oil contact, and as a result, the injection interval was separated vertically from the reservoir by several of the tight "barrier" zones.

	2.	Pay continuity was not sufficient in these lower zones to allow the injected water to readily move laterally over the two, three, or more well spacings required to bring it into contact with the main productive zones.

The final pressure and production history match obtained is shown in Fig. 10.

�Fig. 10  --  Final pressure and production history match.
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Sensitivity to Vertical Communication

The geologic study provided information to delineate the position, areal extent, and variation in thickness of rock units which were extensively anhydrite cemented, forming potential barriers to vertical flow of fluids within the reservoir section.  However, it was difficult to quantify the vertical permeability of these units.  The history match of reservoir performance  using the simulator allowed an approximate determination of the effective vertical permeability across these zones.

The foot-by-foot core analyses of these 2- to 8-ft (0.6- to 2.4-m) thick "barrier” zones showed horizontal permeabilities which were all less than 1 md, with one or more values commonly less than 0.1 md.  Vertical permeabilities were not measured; however, it would be expected that they would be considerably less than the measured horizontal permeabilities.

The simulator was used to examine the sensitivity of reservoir response to changes in the effective vertical permeability of these barriers.  Four different configurations were used in the sensitivity work.

	1.	"NO BARRIERS" vertical permeability equal to horizontal permeability in all model layers. 
	2.	"MODERATE BARRIERS"  -  vertical transmissibilities reduced to simulate the effect of barrier units having 0.1 to 0.01 md vertical permeability.
	3.	"STRONG BARRIERS" - vertical transmissibilities reduced to simulate the effect of barrier units having 10-3 to 10-4 md vertical permeability. 
	4.	"COMPLETE NO-FLOW BARRIERS"  -  vertical transmissibilities set to zero at layer boundaries near the gas-oil contact. 

This work showed that it was not possible to match the field performance with "COMPLETE NO-FLOW BARRIERS" within the reservoir section.  The "NO-BARRIERS" and "MODERATE BARRIERS" configurations did not show significant differences in internal reservoir response characteristics.  Thus, the majority of the time was spent examining differences in reservoir response between the "MODERATE BARRIERS" and the "STRONG BARRIERS" models.

Vertical flow between layers in the model was controlled by adjusting the vertical transmissibilities between layers.  The objective was not to accurately quantify the actual vertical permeability, but rather to obtain a satisfactory predictive model of reservoir performance.  Variations in vertical transmissibility will control the material balance of fluids migrating vertically into or out of a given layer in the model.  This, in turn, is reflected in changes in such reservoir response characteristics as gas coning behavior and the magnitude of pressure differentials created between zones within the reservoir.

Two major differences were observed in the response of the "MODERATE BARRIERS" and "STRONG BARRIERS" models during the history matching work.  These two areas of difference were  
1.	the importance of gas coning as the mechanism responsible for the observed excess free gas production and 
2.	the magnitude of vertical pressure differentials created between zones in the reservoir. 

Under the "MODERATE BARRIERS" model configuration, the excess gas cap gas production was observed to occur as a consequence of gas coning into wells with structurally higher completion intervals.  However, field performance data indicated that gas coning was not the major source of the excess free gas production.  The wells exhibiting the coning behavior in the model were not historically high gas-oil ratio (GOR) or "problem" wells in the field.  Rather, the high-GOR wells (requiring repeated workovers) were distributed randomly throughout the field, both with regard to areal location and structural position of the completion interval.  The "STRONG BARRIERS" configuration greatly restricted the vertical movement of gas.  Coning was drastically reduced and appeared much later in the producing life of the wells.  The excess gas-cap gas production was obtained in this model by simulating gas channeling behind pipe into the "problem GOR" wells.  In this way, the correct overall field gas production was maintained.  This resulted in an equally satisfactory pressure history match and a better match of individual-well GOR behavior.  Thus, individual-well GOR performance and workover histories provided evidence to support the "STRONG BARRIERS" model as being the more correct reservoir description.

The other major difference observed in model response under these two barrier strength configurations was the magnitude of the pressure differentials created across the barriers between zones in the reservoir.  The "MODERATE BARRIERS" model showed maximum pressure differentials of 20 to 25 psi (0.14 to 0.17 MPa) between zones.  The "STRONG BARRIERS" model showed that pressure differentials of up to 150 to 200 psi (1 to 1.4 MPa) between zones would develop in many areas of the field.  Results of a sequence of drillstem tests conducted in Well 609w, drilled in 1973, indicated that pressure differentials between zones in excess of 100 psi (0.7 MPa) had developed.  Also, during the pressure interference testing, pressure differentials in excess of 200 psi (1.4 MPa) were observed between different zones in adjacent wells in some parts of the field.  Thus, the available evidence again supports the "STRONG BARRIERS" configuration as being the more correct model of reservoir structure and performance.


PREDICTIONS OF FUTURE PERFORMANCE

The history-matched "STRONG BARRIERS" reservoir description was chosen as the best predictive model of the alternatives examined.  The final pressure and production performance history match using this model is shown in Fig. 10.  The simulator was next run in a prediction mode to project future field performance.  This prediction assumed a continuation of the field configuration and operating conditions existing as of Jan. 1, 1978.  This case was designated as  the base case against which all other operating alternatives were compared.  Field performance projections for the base case are presented in Fig. 11.

Fig. 11
Predicted field performance under the base case of continued current operations.
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�A wide range of alternative operating plans were examined using the simulation model.  The major parameters examined were:  

1.	changes in the rates of water injection, 
2.	management of gas cap voidage (alternatives ranged from greatly increased gas injection to blowdown of the gas cap at various points in time), and 

3.	further infill drilling of additional wells in the pattern area.

This prediction work demonstrated the complex nature of the waterflood response in this reservoir.  The most significant factor governing reservoir performance was the vertical communication between the oil zone and the gas cap.  Even with the extremely low history-matched vertical permeabilities used in the simulator, prediction runs indicated that significant movement of oil into the gas cap would occur in response to any large pressure differential created between the oil zone and the gas cap.

The actual volume of oil moving into the gas cap was extremely sensitive to the vertical permeability assumed and to the dynamics of the specific field operating plan considered. Projections assuming continued current operations indicated that a volume of oil equivalent to 10 to 20% of the potential waterflood oil recovery could be lost to the gas cap.  The model showed that any operating plan which would cause an increase in the pressure differential between the oil zone and the gas cap (such as greatly increased water injection rates or early blowdown of the gas cap) would cause a further increase in the volume of oil moving into the gas cap, and a corresponding decrease in recovery.

Conversely, operating schemes which tend to minimize the pressure differential between the waterflood oil zone and the gas cap, such as increased gas injection into the gas cap or drilling additional production wells in the waterflood zone, showed a reduction in oil movement into the gas cap and a corresponding increase in waterflood oil recovery.  A comparison of the results of all of the prediction cases examined showed that an infill drilling program was by far the most economically attractive alternative.  The projected incremental oil recovery as a result of converting the existing 40-acre  (16.2-ha)  five-spot waterflood pattern development to a 40-acre (16.2-ha) inverted nine-spot pattern development through infill drilling is as follows:


	Ultimate Recovery
	Million Stock-	Per Cent of Original
	Tank Barrels 	(106 m3 )	Oil-in-Place

Estimated Primary Recovery	28.2	(4.48)	16.2

Continued Current Waterflood Operations	45.1	(7.17)	25.9

Waterflood with Infill Drilling	49.0	(7.79)	28.2

Incremental Recovery from Infill Drilling	3.9	(0.62)	2.3



The predicted oil production performance of the main dome area under infill drilling is compared to continued current operations in Fig. 12.
�Fig. 12.
Predicted field performance showing incremental oil recovery expeted from infill drilling.
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The simulation work showed that there is a definite potential for movement of oil into the gas cap under waterflood operations.  If this is ignored, the recovery and economic return will be reduced significantly.  If, however, this potential for movement of oil between zones is recognized, the gas cap management, timing of infill drilling, and water injection rates can be designed to minimize the loss of oil to the gas cap.


PROPOSED RESERVOIR MANAGEMENT PLAN

The proposed reservoir management plan called for drilling up to 46 infill production wells within the existing 40-acre (16.2-ha) five-spot pattern development.  These would be located to allow the pattern area to be converted eventually to a 40-acre (16.2-ha) inverted nine-spot pattern development.  Eight wells were to be drilled in 1979 followed by eight additional wells in each succeeding year, to a maximum of 46 wells.  The performance of the infill drilling program would be evaluated at each step.  Water injection rates would be increased concurrently with the drilling program to maintain voidage replacement in the oil zone but prevent excessive over-injection of water.

The study indicated that blowdown of the gas cap before the peak in waterflood oil production rates would significantly reduce oil recovery.  Conversely, increased gas injection into the gas cap would yield additional waterflood oil recovery; however, current economic conditions indicate this  would not be cost effective at the present time.  Other possible operating alternatives include injection of lower heating value hydrocarbon gas or inert gas to achieve voidage replacement in the gas cap at lower cost.


COMPARISON OF FIELD PERFORMANCE WITH MODEL PREDICTIONS

The performance or the field to date has shown that this study has provided a valid predictive model of field performance.  Figures 13 and 14 present a comparison of the oil production and gas-oil ratio performance predictions with the observed performance for the period from January, 1978 through July, 1981.  The performance comparison shows excellent agreement with the simulation model predictions.
Fig. 13  --  Comparison of actual vs. predicted oil production performance.
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Fig. 14  --  Comparison of actual vs. predicted GOR performance.
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The first group of eight infill producing wells was put on production during the last half of 1979.  The combined initial potential of these eight wells was tested at 1,494 BOPD (238 m3/d). The  simulation  model  prediction had  projected this group of wells to have a combined initial production of 1,560 BOPD (248 m3d), a difference of less than 5%.

Because of the success of the infill drilling program through mid-1980,  it was decided to accelerate the schedule of the drilling program in the second  half of 1980.  This departure from the operating program assumed in  the simulator resulted in slightly higher field producing rates and higher gas-oil ratios than predicted by the model.

CONCLUSIONS

1.	Development of a detailed  reservoir description using both geological and engineering data is necessary for the type of comprehensive numerical simulation study conducted for the West Seminole reservoir.

2.	In carbonate reservoirs, it is important that the effects of both primary depositional factors and post-depositional diagenetic  controls on the porosity and permeability distribution be considered in development of the reservoir description.

3.	Waterflood performance of this field is extremely sensitive to the vertical permeability between major porosity zones in the reservoir.

4.	It was possible to quantify the general order of magnitude of vertical permeability effects in this reservoir using a three-dimensional simulation model.

5.	An understanding of the internal reservoir response characteristics is essential to future reservoir management of the West Seminole field.  The most important of these characteristics are:

a.	There will be a slow, but substantial movement of oil into the gas cap under waterflood operations.

b.	The magnitude of this movement will depend on the differential created between the oil zone and the gas cap. 

6.	An increase in oil recovery can be obtained by managing the reservoir to minimize this pressure differential and the resulting loss of oil to the gas cap.  This can be most economically achieved through: 

a.	drilling additional production wells in the pattern area, 

b.	controlling the rates of water injection so as to maintain voidage replacement in the waterflood zone without over-injection, and

c.	careful management of voidage replacement into the gas cap.
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�PART B:  BOAST FORTRAN CODE


10.  PROGRAM STRUCTURE


A brief description of each BOAST subroutine is presented in Table 10.1.  These subroutines are called by the MAIN program or by other subroutines during the computer run.

Every BOAST run proceeds in two stages.  First, all data except well information and time step sizes are read.  The input data is then used to set the reservoir model at initial reservoir conditions.  Once initialized, the program proceeds to the second stage in which the fluid flow equations are solved.  Since the well configuration and operating strategy for the reservoir may change during the reservoir life, BOAST allows input of well information at user-specified times during the computer run.  The repetitive nature of the well information and time step size input has led to the data for the second calculation stage being called recurrent data.

The calculation procedure used by BOAST can be summarized as follows:

Initialization Stage:

1.	Read grid geometry.
2.	Read porosity and permeability distributions.
3.	Calculate geometric part of transmissibilities.
4.	Read fluid properties and relative permeability data.
5.	Initialize pressure and saturation distributions.
6.	Specify parameters for solution methods.


Recurrent Stage:

	*1.	Read time step and well information.
	*2.	Calculate well rates for rate constraint option.
	*3.	Calculate well rates for explicit pressure constraint option.
	4.	Calculate coefficients of pressure equation.
	*5	Alter coefficients for implicit pressure constraint option.
	6.	Solve pressure equation.
	*7.	Calculate well rates for implicit pressure constraint option.
	8.	Solve for oil saturation So
	9.	Solve for water saturation Sw
	10.	Sg  =  1  -  So  -  Sw
	*11.	Automatic time step test.  Repeat time step if necessary.
	*12.	Calculate floating bubble point pressure.
	*13.	Write Well Report.
	*14.	Calculate material balance.
	*15.	Write Summary Report.
	16.	Update pressure and saturation arrays.
	*17.	Repeat recurrent stage.

*Performed according to BOAST-user instructions.

�TABLE 10.1
BOAST SUBROUTINE SUMMARY


Subroutine	Purpose

BANDIN	Sets up matrix of pressure equation coefficients with standard ordering.

BAND	Solves pressure equation (LU factorization).

CODES	Reads solution method, solution parameters, and diagnostic output controls.

D4IN	Sets up matrix of pressure equation coefficients with D4 ordering.

D4	Sets up submatrix of D4 ordered matrix for BAND solution.

GRID1	Reads grid block sizes and computes node elevations.

INTERP	Performs linear interpolation.

INTPVT	Performs linear interpolation with floating bubble point calculation of undersaturated oil PVT properties.

LSOR	Linear successive overrelaxation method.

LTRI	Tridiagonal algorithm.

MATBAL	Computes simple material balance.

NODES	Reads time step and well information.

PARM1	Reads porosity and permeability arrays.

PRTPS	Writes Summary Report.

QRATE	Computes well rates when rate or explicit pressure constraint activated;

PRATEI:	Revises pressure equation coefficients when implicit pressure constraint activated;

PRATEO:	Computes rates when implicit pressure constraint activated.

SOLMAT	Computes pressure equation coefficients.

TABLE	Reads PVT and relative permeability data.

TRAN1	Computes geometric part of transmissibilities.

UINIT1	Reads initial pressure and saturation arrays.
�11.	REDIMENSIONING INSTRUCTIONS


Computer storage requirements for BOAST depend primarily on the dimensions of the arrays within BOAST.  To minimize storage costs, it is important to know the dimensions of all arrays so they can be set at the most efficient size needed for a given problem.  The array sizes are summarized in Tables 11.1 through 11.3.  Dimension sizes are given in terms of the following parameters:

	NX	=	maximum number of x-direction blocks;
	NY	= 	maximum number of y-direction blocks;
	NZ	= 	maximum number of z-direction blocks;
	NXP	= 	NX + 1;
	NYP	= 	NY + 1;
	NZP	= 	NZ + 1;
	NXYMAX	= 	the larger of NX or NY;
	NMAX	= 	NX * NY * NZ;
	NTE	= 	maximum number of input data table entries;
	NW	= 	maximum number of allowed wells.

Besides the arrays, the variable NROW in subroutine BANDIN should equal NMAX, whereas NROW in subroutine D4 should equal NMAX/2.

By redimensioning BOAST to fit the problem at hand, the user can minimize storage costs.

�TABLE 11.1
DIMENSIONS OF ARRAYS IN COMMON

Array	Dimension	Location

PBOT	NX, NY, NZ	COMMON /BUBBLE/
AW	NX, NY, NZ	COMMON /COEF/
AE	NX, NY, NZ	COMMON /COEF/
AN	NX, NY, NZ	COMMON /COEF/
AS	NX, NY, NZ	COMMON /COEF/
AB	NX, NY, NZ	COMMON /COEF/
AT	NX, NY, NZ	COMMON /COEF/
E	NX, NY, NZ	COMMON /COEF/
B	NX, NY, NZ	COMMON /COEF/
PN	NX, NY, NZ	COMMON /SARRAY/
SON	NX, NY, NZ	COMMON /SARRAY/
SWN	NX, NY, NZ	COMMON /SARRAY/
SGN	NX, NY, NZ	COMMON /SARRAY/
SO1	NX, NY, NZ	COMMON /SARRAY/
SW1	NX, NY, NZ	COMMON /SARRAY/
SG1	NX, NY, NZ	COMMON /SARRAY/
A1	NX, NY, NZ	COMMON /SARRAY/
A2	NX, NY, NZ	COMMON /SARRAY!
A3	NX, NY, NZ	COMMON /SARRAY!
SUM	NX, NY, NZ	COMMON /SARRAY/
GAM	NX, NY, NZ	COMMON /SARRAY/
QS	NX, NY, NZ	COMMON /SARRAY/
BMAT	NMAX, NMAX	COMMON /SBAND1/
QVEC	NMAX	COMMON /SBAND1/
PVEC	NMAX	COMMON /SBAND1/
KX	NX, NY, NZ	COMMON /SPARM1/
KY	NX, NY, NZ	COMMON /SPARM1/
KZ	NX, NY, NZ	COMMON /SPARM1/
EL	NX, NY, NZ	COMMON /SPARM1/
TX	NXP, NY, NZ	COMMON /SPARM1/
TY	NX, NYP, NZ	COMMON /SPARM1/
TZ	NX, NY, NZP	COMMON /SPARM1/
P	NX, NY, NZ	COMMON /SPRTPS/
SO	NX, NY, NZ	COMMON /SPRTPS/
SW	NX, NY, NZ	COMMON /SPRTPS/
SG	NX, NY, NZ	COMMON /SPRTPS/
DX	NX, NY, NZ	COMMON /VECTOR/
DY	NX, NY, NZ	COMMON /VECTOR/
DZ	NX, NY, NZ	COMMON /VECTOR/
IQN1	NW	COMMON /VECTOR/
IQN2	NW	COMMON /VECTOR/
IQN3	NW	COMMON /VECTOR/
BO	NX, NY, NZ	COMMON /SSOLN/
BW	NX, NY, NZ	COMMON /SSOLN/
BG	NX, NY, NZ	COMMON /SSOLN/
QO	NX, NY, NZ	COMMON /SSOLN/
QW	NX, NY, NZ	COMMON /SSOLN/
QG	NX, NY, NZ	COMMON /SSOLN/
GOWT	NX, NY, NZ	COMMON /SSOLN/
GWWT	NX, NY, NZ	COMMON /SSOLN/
GGWT	NX, NY, NZ	COMMON /SSOLN/
O1	NXP, NY, NZ	COMMON /SSOLN/
W1	NXP, NY, NZ	COMMON /SSOLN/
�TABLE 11.1:	DIMENSIONS OF ARRAYS IN COMMON (CONTINUED)

Array	Dimension	Location

O2	NX, NYP, NZ	COMMON /SSOLN/
W2	NX, NYP, NZ	COMMON /SSOLN/
O3	NX, NY, NZP	COMMON /SSOLN/
W3	NX, NY, NZP	COMMON /SSOLN/
QOWC	NX, NY, NZ	COMMON /SSOLN/
VP	NX, NY, NZ	COMMON /SSOLN/
CT	NX, NY, NZ	COMMON /SSOLN/
OOIP	NZ	DIMENSION
OWlP	NZ	DIMENSION
ODGIP	NZ	DIMENSION
OFGIP	NZ	DIMENSION
INDD4	NX, NY, NZ	COMMON /D4IND/
IPLANE	NX + NY + NZ	COMMON /D4IND/
SAT	NTE	COMMON /SPVT/
KROT	NTE	COMMON /SPVT/
KRWT	NTE	COMMON /SPVT/
KRGT	NTE	COMMON /SPVT/
PCOWT	NTE	COMMON /SPVT/
PCGOT	NTE	COMMON /SPVT/
POT	NTE	COMMON /SPVT/
MUOT	NTE	COMMON /SPVT/
BOT	NTE	COMMON /SPVT/
BOPT	NTE	COMMON /SPVT/
RSOT	NTE	COMMON /SPVT/
RSOPT	NTE	COMMON /SPVT/
PWT	NTE	COMMON /SPVT/
MUWT	NTE	COMMON /SPVT/
BWT	NTE	COMMON /SPVT/
BWPT	NTE	COMMON /SPVT/
RSWT	NTE	COMMON /SPVT/
RSWPT	NTE	COMMON /SPVT/
PGT	NTE	COMMON /SPVT/
MUGT	NTE	COMMON /SPVT/
BGT	NTE	COMMON /SPVT/
BGPT	NTE	COMMON /SPVT/
CRT	NTE	COMMON /SPVT/
PID	NW, NZ	COMMON /SRATE/
PWF	NW, NZ	COMMON /SRATE/
PWFC	NW, NZ	COMMON /SRATE/
GMO	NW, NZ	COMMON /SRATE/
GMW	NW, NZ	COMMON /SRATE/
GMG	NW, NZ	COMMON /SRATE/
CUMO	NW, NZ	COMMON /SRATE/
CUMW	NW, NZ	COMMON /SRATE/
CUMG	NW, NZ	COMMON /SRATE/
KIP	NW	COMMON /SRATE/
WELLID	NW	COMMON /SRATE/
LAYER	NW	COMMON /SRATE/
QVO	NW	COMMON /SRATE/
QVW	NW	COMMON /SRATE/
QVG	NW	COMMON /SRATE/
QVT	NW	COMMON /SRATE/

�TABLE 11.2
MAIN PROGRAM DATA STATEMENTS

DATA	TX, TY, TZ/(NXP*NY*NZ)*0.0, (NX*NYP*NZ)*0.0, (NX*NY*NZP)*0.0/

DATA	CUMO, CUMW, CUMG/(NW*NZ)*0.0, (NW*NZ)*0.0, (NW*NZ)*0.0/

DATA	AW, AS, AT/NMAX*0.0, NMAX*0.0, NMAX*0.0/

DATA	AE, AN, AB/NMAX*0.0, NMAX*0.0, NMAX*0.0/

DATA	OW, OE, WW, WE/(NXP*NY*NZ)*0.0, (NXP*NY*NZ)*0.0, (NXP*NY*NZ)*0.0, (NXP*NY*NZ)*0.0/

DATA	OS, ON, WS, WN/(NX*NYP*NZ)*0.0, (NX*NYP*NZ)*0.0, (NX*NYP*NZ) *0.0, (NX*NYP*NZ) *0.0/

DATA	OT, OB, WT, WB/(NX*NY*NZP)*0.0, (NX*NY*NZP)*0.0, (NX*NY*NZP) *0.0, (NX*NY*NZP) *0.0/

DATA	IM, JM, KM, ETI, FT, FTMAX/NX, NY, NZ, 0.0, 0.0, 0.0/


�TABLE 11.3
DIMENSION STATEMENTS IN SUBROUTINES


Subroutine	Dimension

GRID1	SUM(NX,NY),  VAREL(NX,NY),  RDXL(NX),  RDYL(NY),  RDZL(NZ)

INTERP	X(NTE),  Y(NTE)

INTPVT	X(NTE),  Y(NTE)

LSOR	UN(NXYMAX),  AZL(NXYMAX),  BZL(NXYMAX),  CZL(NXYMAX), DZL(NXYMAX),  UZL(NXYMAX)

LTRI	X(NXYMAX),  BETA(NXYMAX),  GAMMA(NXYMAX),  W(NXYMAX)

PARM1	RPHL(NZ),  RKXL(NZ),  RKYL(NZ),  RKZL(NZ)

BAND	GVEC(NMAX)

D4	AD4  (NMAX,NMAX),  BD4  (NMAX),  XD4  (NMAX)
	� EMBED Equation.2  ���

�12.	BOAST FORTRAN CODE


The Fortran code for BOAST dimension parameter values are set as:

	NX	=	10
	NY	=	10
	NZ	=	3
	NXP	=	11
	NYP	=	11
	NZP	=	4
	NXYMAX	=	10
	NMAX	=	300
	NTE	=	25
	NW	=	20
	NROW (in BANDIN)	=	300
	NROW (in D4)	=	150

For detailed information on the application of BOAST, see Volume II of this set (Fanchi and Harpole, 1982).




* Similar expressions can be written for the y and z components.
* Conversion factor is exact.
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