FACTSHEET FOR PARTNERSHIP FIELD VALIDATION TEST

Partnership Name	Southwest Regional Partnership on Carbon Sequestration										
Contacts:	Name Organization E-Mail										
DOE/NETL Project Mgr.	William O'Dowd NETL William.ODowd@NETL.DOE.GOV										
Principal Investigator	Reid Grigg / Brian McPherson NMT reid@prrc.nmt.edu / brian@nmt.edu										
Field Test Information: Field Test Name	Permian Basin, Texas: SACROC EOR-Sequestration Test										
Test Location	Near Snyder, Texas										
Amount and	Tons Source										
Source of CO ₂	300,000 tons/year for 3 to 5 years; CO ₂ sourced from McElmo Dome, CO										
Field Test Partners											
(Primary Sponsors)	KinderMorgan CO ₂ Company, L.P.										

Summary of Field Test Site and Operations

General Geology and Target Reservoirs: The SACROC oil field unit, the main part of the Kelly-Snyder field, lies along a trend of fields described by Galloway et al. (1983) as the Horseshoe Atoll Play (Figure 1). Hydrocarbons are produced from Pennsylvanian-age strata, including the Cisco and Canyon formations, which represent an isolated platform depositional environment (Figure 2). The Cisco and Canyon formations are carbonates that vary in observed facies, including interbedded pellet, crinoid, algal, and intraclast grainstones and boundstones.

Seal Strata: The section overlying the productive oil zone are Permian-age strata, the Triassic age Dockum formation, and the Paloecene/Eocene Ogallala Formation (Figure 2). Permian strata include cyclic shallow-

water ramp carbonates sequences bracketed by cycle-base shales, and evaporite tops. The carbonate mudstones and evaporite beds are very low permeability. Immediately overlying the injection zone, the Wolfcamp formation within the Wichita-Albany Group is a high-stand sea level rise flooding surface composed of marine shales. Thus, there are both primary and secondary seals between the injection zone and potable water zones above.

Potential Leakage Areas: The Pennsylvanian Reef strata at SACROC (Figure 2) have low leakage potential. The structural closure is not formed by faulting and no major faults are mapped in the area. Fracturing is prevalent within the injection zone, but because the origin of fractures is non-tectonic, the fractures seem to be confined to the injection interval and do not result in potential leakage paths. Fractures are a result of paleo low-stand exposures that formed karsts of varying sizes. SACROC is highly developed, with numerous wellbores and production-related infrastructure. Potential leakage from wellbores is a field management issue that can be addressed by robust engineering practices. Well -drilling in these fields is documented and indicates little potential for unknown wellbores. **Reservoir Properties:** The geology of the injection zone is comparable to a large class of potential brine storage reservoirs. Depth of the flooded zones range from ~6300-7100 ft

(1900–2200 m) with average reservoir pressures of ~2600 psig. The Wolfcamp shale is extremely low permeability, but the reservoir units approach 10s of millidarcies with porosity ranging from ~2 to ~15%. The oil residing in the field is of high quality. Some free gas was most likely released into the reservoir during initial production, as inferred by increasing producing gas-oil ratios. Pore types include vugs, interparticle, intercrystalline, and fractures. Because the relationship between porosity and permeability is dependent on the pore type, it can be quite variable. Although storage and flow capacity is low, the reservoir has been interpreted to be in fairly good vertical and horizontal communication, based on the consistency of bottomhole pressure measurements.

In sum, the target reservoir physical properties and character of its oil make the Pennsylvanian carbonates (Figure 2) a good candidate for CO_2 enhanced oil recovery as well as concomitant storage of CO_2 . Good injectivity is also observed by the field operator, and elucidation of potential injectivity reduction following CO_2 injection is among SWP goals.

Data Quality: Formation characterization is ongoing at SACROC. The field was discovered in the early 1950's and quickly developed. Thus, much of the well data and wireline logs are quite old. Newly acquired data have increased the quality of subsurface characterization.

Figure 3. BEG Geologic Atlas of Texas maps showing surface geology within the multicounyt area on index map insert. SACROC oilfield (black outline in center) located in central Scurry County. SWP groundwater sample (yellow circles) and Texas Water Development Board database (open circles) locations for sources of groundwater geochemical data analysis in progress. Key to geologic units: Quaternary grouped (Qbd, Qs, Qu); Paleocene/Eocene Ogallala Fm. = Eo: Triassic Dockum Fm. = TRd.

Surface Description and Land Use: The Ogallala Formation (Figure 3, Eo) is present at the surface over most of the SACROC unit. Presence of the Ogallala overlying the Dockum Formation (Figure 3, TRd) results in slightly different chemistry of Dockum groundwater because in this case, precipitation seeps downward through Ogallala before recharging the Dockum. The Permian units (Figure 3, Pq, Pwh) have been grouped in a geographic information system (GIS) project for simplicity of presentation. A surface water divide bisects the Ogallala outcrop. Regional groundwater analyses indicate a possible groundwater variability because there are likely changes in groundwater chemistry along flow-paths to the northeast toward the Double Mountain Fork of the Brazos River and to the southwest toward the Colorado River.

Surface topography is relatively flat compared to other SWP pilot areas, with only gentle hills and mild terraces associated with surface water erosion. As such, land-usage in the area is dominated by farming and oilfield infrastructure with some residential areas.

Nearest Underground Drinking Water Source: Drinking water over this area is present from ~100 to 500 ft depths throughout the region. Drinking water sources in this area (Figures 3) are a combination of groundwater and surface water piped from reservoir southwest of SACROC oilfield. Where the Ogallala and Dockum formations are absent, shallow Permian drinking water lies at relatively shallow depths. Most of the water wells over SACROC and in Scurry County are defined as producing from the Dockum Formation but they are likely also completed in the Ogallala formation. Water wells in Fisher County are completed primarily in Permian units (Blaine and other aquifers), the Triassic Dockum, or Quaternary Seymour units. Injection Operation: Injection of CO₂ is ongoing in the SACROC Unit. Total CO₂ injection exceeds approximately 300,000 tons per year. A new stage of injection that the SWP will specifically monitor will begin in late 2008; this includes a WAG (water injection alternating with gas injection) period where CO₂ injection will be partially offset by water.

Research Objectives

The SACROC Unit in the Texas Permian Basin is the oldest CO₂-EOR operation in the United States, with CO₂ injection dating from 1972—only one CO₂-EOR project in Hungary is older, dating from ~1969. SACROC continues to be flooded by the current owner/operator, Kinder Morgan CO₂ Company, L.P. (KinderMorgan). Current operations inject ~13.5 MtCO₂/yr and withdraw/recycle ~7 MtCO₂/yr, for a net storage of ~6.5 MtCO₂/yr. In total, the site has accumulated more than 55 MtCO₂.

Figure 4. Results of an extensive history-match analysis to evaluate trapping mechanisms at SACROC for 100 years starting in 1972.

Our first effort at SACROC was an intensive post-audit modeling analysis to understand the fate of the CO_2 injected over 30 years' time, including a forecast of decades to follow. Results suggest that during injection, hydrostratigraphic trapping dominates, but for the 70 years to follow, residual-gas trapping is the dominant mode of CO_2 storage (Figure 4). KinderMorgan maintains a vast database of CO_2 injection/production data that facilitated this analysis. The SWP also began extensive MMV studies at SACROC during its ongoing injection operations. The SACROC pilot represents an unprecedented opportunity for CO_2 storage history-matching in tandem with large-scale MMV operations.

EOR-Sequestration Testing: The CO₂ at SACROC is sourced from the McElmo Dome. The SWP will monitor the new stage of CO₂ injection for a period of at least 18 months. State-of-the-art reservoir modeling will be used to simulate flow and chemical processes and orecast ultimate CO₂ storage capacities. Given the historical success of EOR in this and other southern U.S. basins, our primary research objective of the EOR-sequestration test is to evaluate and maximize efficacy of CO₂ subsurface monitoring technologies, and to improve our ability to track the fate of injected CO₂ and to calculate ultimate storage capacity. A particular focus will be the efficacy of 2-D and 3-D seismic imaging methods and investigation of ways to optimize interpretation using other geophysical data. Finally, another major goal is to develop a rigorous risk assessment framework that will help identify optimum storage sites in this and other similar oilfield reservoirs located throughout the southwestern U.S.

Summary of Modeling and MMV Efforts:

Table 1 summarizes our ongoing and future monitoring activities for the SACROC EOR—sequestration testing. Data from these monitoring activities are being used to parameterize state-of-the-art basin reservoir models that include coupling of multiphase CO_2 -groundwater flow with rock deformation and chemical reactions. These models are being used to conduct continuing post-audit (history match) simulations of SACROC and to evaluate ranges of residence times, migration rates and patterns. We are also examining the effects of CO_2 injection on fluid pressures and rock strain (e.g., potential reactivation of fracture permeability). Model simulations are being conducted to examine potential reservoir diagenesis to follow CO_2 injection, including variations in solubility, dissolution, and precipitation. Seismic models, including 3-D reflection, vertical seismic profiling, passive seismic monitor, and repeat borehole geophysical logging are helping us evaluate different geophysical methods for imaging CO_2 in the subsurface.

Table 1. Measurement Tec	chnologies Employed at SACROC, Te	exas Test Site
Measurement technique	Measurement parameters	Applications
	- Travel time	- Tracing movement of CO ₂
Natural tracers	 Partitioning of CO₂ in brine/ oil 	 Quantifying solubility trapping
	- Identification sources of CO ₂	- Tracing leakage
	- CO ₂ , HCO ₃ , CO ₃ ²⁻	- Quantifying solubility & mineral trapping
Water composition	- Major ions	- Quantifying CO ₂ -water-rock interactions
	- Trace elements	- Detecting leakage into shallow
	- Salinity	groundwater aquifers
	- Formation pressure	- Control of formation pressure below
Subsurface pressure	- Annulus pressure	fracture gradient
	- Groundwater aquifer pressure	- Wellbore and injection tubing condition
		- Leakage out of the storage formation
		- Tracking CO ₂ movement in and above
	- Brine salinity	storage formation
Well logs	- Sonic velocity	- Tracking migration of brine into shallow
_	- CO ₂ saturation	aquifers
		- Calibrating seismic velocities for 2-D
		seismic surveys
Time-lapse 2-D seismic	 P and S wave velocity 	- Tracking CO ₂ movement in and above
imaging	 Reflection horizons 	storage formation
	 Seismic amplitude attenuation 	
Time-lapse vertical	 P and S wave velocity 	 Detecting detailed distribution of CO₂ in
seismic profiling	 Reflection horizons 	the storage formation
	 Seismic amplitude attenuation 	 Detection leakage through faults and
		fractures
		 Tracking movement of CO₂ in and
Electrical techniques	 Formation conductivity 	above the storage formation
		 Detecting migration of brine into shallow
		aquifers
	 CO₂ fluxes between the land 	
CO ₂ land surface flux	surface and atmosphere	 Detect, locate and quantify CO₂
monitoring using flux	Atmosphere	releases
chambers		
	 Soil gas composition 	 Detect elevated levels of CO₂
Soil gas sampling	Isotopic analysis of CO ₂	- Identify source of elevated soil gas CO ₂
		 Evaluate ecosystem impacts

Accomplishments to Date

- Baseline surface fluxes measured
- Baseline reservoir groundwater (brine) compositions assessed
- 3-D reservoir model grids assembled
- surface and subsurface structure contour maps and cross-sections refined through new mapping using recently acquired geophysical logs that span the shallow (100 to 3,000 ft) subsurface.
- identification of shallow groundwater flow paths
- identification of regional trends in groundwater chemistry
- identification of impacts to shallow groundwater from old (pre-1975) produced water (brine) evaporation pits
- initial history match simulations completed, and updates continue as data is collected
- obtained 3-D seismic data volume collected by Kinder Morgan in 2003 over the northern section of SACROC for use as baseline for new surface seismic data
- completed pre-injection borehole geophysical logs in multiple monitoring wells within injection pilot site
- completed pre-injection vertical seismic profiling

• CO_2 injection started in first two wells 9/2008, second two well scheduled for 10/2008.

Summary of Target Sink Storage Opportunities and Benefits to the Region

- The SACROC pilot will be an initial high resolution analysis of the potential for CO₂ storage in the broader carbonate "Horseshoe Atoll" system, a huge (area and volume) system with potentially enormous CO₂ capacity (Figure 1). Given that most of the western side of the atoll is below the oilwater contact, it is particularly appealing for large-scale sequestration, as suggested by our Phase I analysis of the region.
- The SACROC field is also representative of many oil/gas fields throughout the southwestern U.S., and results will be applicable to many such fields.
- Typically, EOR with CO₂ is carried out with an objective to maximize re-production and recycling of CO₂ for further EOR. Among the SWP goals is to maximize sequestration, or leaving CO₂ in the ground rather than recycling, while not compromising efficacy of EOR.

Cost:	Field Project Key Dates:
Total Field Project Cost: Approximately \$5.5M	Baseline Completed: January, 2008
DOE Share: Approximately \$4.4 or 80%	Drilling Operations Begin: October, 2007
Non-DOE Share: Approximately \$1.1 or 20%	Injection Operations Begin: September, 2008
	MMV Events: September, 2008
Field Test Schedule and Milestones (Gantt	Chart):

Major field operations at SACROC have been under way since the start of the project in late 2005. Safety training, initial reservoir model grids, and other essential SWP activities also began during this past year. A general summary of the SWP's schedule is provided in the Gantt chart below.

Task	Task Name		2006 2007 2008 Q3 Q4 Q1 Q2 Q3 <t< th=""><th colspan="3">008 2009</th><th colspan="4">2010 20</th><th>20</th></t<>							008 2009			2010 20				20			
		Q3 (Q4 Q1	Q2 Q	3 Q4 (21 C	2 Q3	Q4	Q1 (22 Q:	3 Q	4 Q	1 0	2 Q	3 C	4 Q	1 Q	2 Q	3 Q4	Q1
2	SACROC EOR-Sequestration														V					
2.1	Site/Reservoir Characterization and Model Development																			
-					🔶 Init	tial S	ACROO	C Mo	del C	mple	te									
		_																		
							•	▶ н	istory	Matcl	h of	SAC	RO	Co	mple	ete				
2.2	Implement Regulatory Permitting and Risk Mitigation	[
			Regu	latory	Best Pra	actic	es Man	ual (Comp	eted		•								
2.3	Construction, safety and site preparation, baseline MMV											Ť								
			•	Start B	aseline	MMV														
				ء 🔶	Safety Ti	rainir	g Prog	gram	Estal	olishe	d									
2.4	Injection Operations and MMV																			
												S	tart	CO2	Inje	ctior	n and	I MM	v	
										Er	nd C	02 Ir	njec	tion	۲					
2.5	Post Injection MMV																			