An Introduction to Matlab and Simulink for SOFC Modeling and Controls

Stewart Moorehead

Introduction

- The goal of this seminar is to introduce you to the basics of the Matlab and Simulink software packages and how they can be used for fuel cell system modeling and control.
- Seminar Outline
 - Matlab Introduction
 - Simulink Introduction
 - Fuel Cell Systems Modeling SOFC based APU (example application)
 - Fuel Cell Systems Control

Introduction to Matlab

- Matlab stands for MATrix LABoratory and is a programming language/environment designed for mathematics, particularly matrices.
- Matlab is an interpreted language.
- Has built in functions for matrices, complex numbers, graphing, polynomials and ODEs.
- Commands can be entered on the command line or through M-file scripts.

Help Commands

For help finding a command use type help at the command line :

help: brings up a list of help topics

help *topic* : lists all the commands in that topic

help *command*: brings up a description on how to use the command.

If you cannot remember the command name use lookfor at the command line :

Matrices

Assign a matrix : A = [1 2 3;4 5 6;7 8 9] Spaces separate columns, semi-colons (;) separate rows. A is therefore : $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$ Use the whos command to see what variables are defined.

Accessing Matrices

To access a matrix element specify the row and column :

$$x = A(2,3)$$

$$x = 6$$
To access a submatrix or vector, use the colon
$$X = A(1:2, 2:3)$$

$$X = \begin{bmatrix} 2 & 3 \\ 5 & 6 \end{bmatrix}$$

or

$$X = A(2,:)$$
 $X = \begin{bmatrix} 4 & 5 & 6 \end{bmatrix}$

M-File Programming Example

$A = [5 \ 2 \ 1; 3 \ 8 \ 2; 4 \ 7 \ 9];$

- $B = A^{2};$ % ^ denotes exponent, so this is A squared
- $C = A^{-1};$ % And this is matrix inversion.
- A(4,:) = [10 11 12]; %we can dynamically increase the size of %matrices

```
for i=1:100
    d(i) = 0;
    for j=1:4
        d(i) = (A(j,1) + i)^2 + d(i);
    end
```

end

A few tricks to improve efficiency...

```
A = [5 \ 2 \ 1; 3 \ 8 \ 2; 4 \ 7 \ 9];
```

$B = A^2;$	00	^ denotes	exponent,	SO	this	is	А	squared
------------	----	-----------	-----------	----	------	----	---	---------

C = A⁻¹; % And this is matrix inversion.

A(4,:) = [10 11 12]; %we can dynamically increase the size of matrices

```
%For greater efficiency allocate enough space for d all at once
d = zeros(1,100);
```

```
for i=1:100
%We can further increase efficiency by eliminating one of the for
%loops and use the : operator instead
d(i) = sum((A(:,1) + i).^2);
```

end

Polynomials and Functions

```
%An example to illustrate the use of functions and polynomials
%p is a vector of length N+1 whose elements are the coefficients of an Nth
%order polvnomial.
%m is the order of a polynomial to fit to noise corrupted data made with p
%v is the mth order polynomial fit.
function [v] = example3(p, m)
d = zeros(20);
%create a vector of data points using p and a random number
for i=1:20
    d(i) = polyval(p, i) + (rand(1)-0.5)*20; %add random noise
end
%Graph the polynomial and the data points
figure(1);
plot(1:20, polyval(p, 1:20), 1:20, d(1:20), '+');
title('Original Polynomial and Noise Corrupted Data Points');
xlabel('x');
ylabel('p(x)');
%fit an mth order polynomial to the data in d
v = polyfit(1:20, d(1:20), m);
%Graph the fitted polynomial and data points
figure(2);
plot(1:20, polyval(v, 1:20), 1:20, d(1:20), '+');
title('Fitted Polynomial and Noise Corrupted Data Points');
xlabel('x');
vlabel('v(x)');
```

Figure showing polynomial curve fit

Functions

M-File scripts read and place variables in the global workspace.

Functions use local variables. Therefore they do not change your workspace variables, nor are they affected by the state of the current workspace.

Toolboxes

- Matlab comes with many very useful built-in functions.
- However, for some specialty tasks these functions may not be sufficient.
- You can purchase specialty Toolboxes which are libraries of functions useful in specific fields.
- For example the Control Toolbox has commands to do Bode plots, Root Locus, Nyquist and controller design.
- Common toolboxes are: Control, Signal Processing and Statistics.

The MathWorks Products and Prices • North America • August 2003

Please contact your sales representative for pricing on enterprise-based license options.

	MATLAB [®] ¹	Individual
	MATLAB 1	\$1.900
	MATLAB COM Builder 3, 28	\$3,000
	MATLAB Compiler 2	\$2,700
	MATLAB Report Generator	\$500
	MATLAB Web Server 4	\$2,000
	MATLAB Runtime Server Dev. Kit 4a, 21	\$5,000
	MATLAB Runtime Distribution 4a, 21	See MATLAB Runtime Server price list.
	MATLAB Excel Builder 3, 28	\$4,000
	Excel Link ³	\$200
	MATLAB Toolboxes	
	Math and Analysis	
	Optimization Toolbox	\$900
	Statistics Toolbox	\$600
	Neural Network Toolbox	\$900
	Symbolic Math Toolbox9	\$600
	Extended Symbolic Math Toolbox 9,12	\$900
	Partial Differential Equation Toolbox	\$900
	Mapping Toolbox	\$900
	Spline Toolbox	\$400
	Curve Fitting Toolbox 33	\$500
	Data Acquisition and Import	
	Data Acquisition Toolbox 3	\$900
	Instrument Control Toolbox 3a	\$600
Œ	Image Acquisition Toolbox 3	\$900
	Database Toolbox 9	\$1,000
	Signal and Image Processing	
	Signal Processing Toolbox	\$800
	Image Processing Toolbox14	\$900
	Communications Toolbox 6	\$800
	System Identification Ioolbox	\$900
	Wavelet loolbox 14, 15	\$900
	Filter Design Ioolbox •	\$1,000
	MAILAB Link for Code ComposerStudio® 3, 6	\$1,000
	Control Design and Analysis	* 1 000
	Control System Ioolbox	\$1,000
		\$000 \$700
		\$000 \$700
	p-Analysis and Synthesis looidox 10	\$000 \$700
	Model Predictive Central Tealt	\$000 \$200
	Model-Based Calibration Toolbox 3,13,26	5,29\$7 000

MATLAB Toolboxes

	_	continuea	Individual
		Finance and Economics	
		Eingneigl Toolbox 13	\$900
	EW	Fixed-Income Toolbox 10, 13	\$1,000
		Financial Time Series Toolbox 10, 13	\$600
		GARCH Toolbox 13	\$1,000
		Datafeed Toolbox 3	\$1,000
		Financial Derivatives Toolbox 10, 13	\$1,000
		5	ψ1,000
		Simulink [®]	
		Simulink 5	\$2,800
		Simulink Performance Tools	\$500
		Stateflow®	\$2,800
		Stateflow Coder 8	\$2,800
		Real-Time Workshop®	\$7,500
		Real-Time Workshop Embedded Coder 7	\$5,000
		Real Time Windows Target 3.7	\$2,000
		vPC Target 3.7	\$4,000
		vPC Target Embedded Option 3.7.19	\$4,000
		vPC TargetBox [™] 19	Gas vPC TargetPay price list
		Simuliak Papart Constator 11	\$ 500
			\$200
		SimMashanias 30	\$4,000
		Sim Device Sustained	\$4,000
		Vistual Basility Tasilian 27 30	\$2,000
		Virtual Reality toolbox 27,00	\$1,000
		Embedded Targets ^{3, 7, 26}	
	-	Embedded Target for Infineon C166® Microcontroller	rs 32 \$4,000
¢	EW	Embedded Target for Motorola®HC12 32	\$4,000
		Embedded Target for Motorola®MPC555 31,32	\$4,000
6	EW	Embedded Target for OSEK/VDX® 32	\$4,000
		Embedded Target for TI® C6000™ DSP 6,20,23	\$4,000
	_	Simulink Blocksets 26	
		DSP Blockset 6	\$1,000
		Fixed-Point Blockset	\$2,000
		Dials & Gauges Blockset 3	\$700
		Communications Blockset 6, 20, 22	\$1,000
		CDMA Reference Blockset 6, 20, 22, 24	\$2,000
		Nonlinear Control Design Blockset	\$1,000
		Aerospace Blockset 16	\$1,000
			• • •

Footnotes

.....

1: Prerequisite for all other products Includes MATLAB Compiler, MATLAB C/C++ Math Library, and MATLAB C/C++ Graphics Library. Not all products are eligible for distribution; see the price list addendum. 3: Available only for Windows 3a: Available only for Windows, Solaris, or Linux 4: Available only for Windows NT, Solaris, or Linux 4a: Consult the price list addendum for products eligible for distribution. Contact The MathWorks for quantity prices and toolbox distribution pricing. 5: Prerequisite for all Simulink products 6: Requires Signal Processing Toolbox 7: Requires Real-Time Workshop 8: Requires Stateflow 9: Not available for HP 700/HP-UX10 **10:** Requires Financial Toolbox **11:** Requires MATLAB Report Generator 12: Includes Symbolic Math Toolbox functionality **13:** Requires Statistics and Optimization Toolboxes 14: Signal Processing Toolbox recommended 15: Image Processing Toolbox recommended 16: Requires Control System Toolbox 18: Control System Toolbox recommended 19: Requires xPC Target 20: Requires DSP Blockset 21: Not available for Macintosh OS X 22: Requires Communications Toolbox 23: Requires MATLAB Link for Code Composer Studio. Fixed-Point Blockset recommended. 24: Requires Communications Blockset 26: Requires Simulink 27: Requires Simulink for blockset portion of product 28: Requires MATLAB Compiler 29: Requires Extended Symbolic Math Toolbox 30: Not available for HP 700, IBM RS, and HP-UX 31: Requires Stateflow and Stateflow Coder (only for CCP-related blocks) 32: Requires Real-Time Workshop Embedded Coder 33: Command line only for HP700/HP-UX10, HP-UX11, and IBM RS Products are available on Windows, UNIX, Linux, and Macintosh OS X unless otherwise indicated. Prices are per unit, listed in U.S. dollars, valid for program installation and use in the U.S. or Canada only, and are subject to change without notice.

© 2003 by The MathWorks, Inc. MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and TargetBox is a trademark of The MathWorks, Inc. TI and Code Composer Studio are registered trademarks, and C6000 is a trademark of Texas Instruments, Inc. Motorola is a registered trademark of Motorola, Inc. Infineon and C166 are registered trademarks of Infineon Technologies AG. Other product or brand names are trademarks or registered trademarks of their respective holders.

www.mathworks.com info@mathworks.com 508.647.7000

Simulink

- Simulink is a software package for modeling, simulating and analyzing dynamic systems.
- Simulink can model liner and non-linear, continuous and discrete time systems.
- Simulink has an easy to use GUI which lets you build models as block diagrams.
- Simulink is part of Matlab and can access all of Matlab's functions.

Some Simulink Blocks

Continuous	Non-Linear	Discrete	Lookup Tables	Functions
x' = Ax+Bu y = Cx+Du State-Space	Coulomb & Viscous Friction) 1 z+0.5 Discrete	Look-Up Table	> <mark>f(u)</mark> Fon
> 1 s+1 Transfer Fon	Saturation	Zero-Order	Interpolation (n-D)	MATLAB Function MATLAB Fon
>DQ↓ Transport Delay		Memory	using PreLook Up	S-Function
Math	Signals	Outputs	Inputs	
) Gain	Demux	Display	Sine Wave	
AND Logical Operator		> Scope	Constant	
Product	Switch	> simout To Workspace	Pulse Generator	
X++ Sum	Mux		Step	

Example 1 : 2nd Order System

Add PID Control to Model

Add noise ...

Reduce Noise Effects with Controller

Saving Data to Matlab Workspace

Use the "To Workspace" block to send simulation data to a variable in the Matlab workspace.

Saves simulation data to variables called input and output.

Saving Time

- Simulink uses a variable time step in the simulation which makes it difficult to determine the time, in seconds, of a data point.
- Use the "Clock" block, to save the time at each time step.

👿 simulin	k_time_example						_	
<u>Eile E</u> dit	<u>View</u> <u>Simulation</u>	F <u>o</u> rmat <u>T</u> ools	<u>H</u> elp					
🗅 🗃	🖬 🚭 X 🖻	6 <u>2</u> 2	: • -		🗳 🔛	🧦 🗊	Ŷ	۲
		Clock	► ti To Wa	me Inkspace				
Ready	100%				ode45			//

Managing Signals – Muxs and Demuxs

- On complex models the number of wires linking blocks can grow very large, impairing readability.
- Use the "mux" block to combine any number of wires into a single bus.
- Many Simulink blocks can accept buses as inputs, treating them as a vector.
- Use the "demux" block to break a bus down into single wires again.

Subsystems

- Collections of blocks can be combined into a "Subsystem" block.
- Here the noise source and plant blocks from the previous example are placed into a subsystem called "Noisy Plant"

Masking

- Normally when a subsystem is double clicked a new window appears showing the blocks inside.
- By Masking the subsystem, we can make double clicking pull up a new window with instructions and user input parameters.
- Masking also lets us specify how the block icon should be drawn.

Masking Example

Double clicking on the Valve1 icon will bring up this information block rather than the inner components.

Masking Example 2

Masks can also request user input which is used by the model components inside the masked block.

Block Parameters: SOFC 🛛 🛛 🖄
Subsystem (mask)
The SOFC block models a Solid Oxide Fuel Cell which produces electricity when Hydrogen or Carbon Monoxide and Oxygen gases are passed through it. A single SOFC is referred to as a cell, much like a battery cell. To get a desired output voltage multiple cells are combined to create a stack. The parameters allow you to set the number of SOFC cells in the stack and the temperature of the stack at the start of simulation.
Parameters Initial Stack Temperature (C)
40
Number of cells in stack
60
OK Cancel <u>H</u> elp <u>Apply</u>

M Functions

- The "MATLAB Fcn" block lets you include a Matlab M-File function to the Simulink model.
- The M-File must be a function with 1 input vector and 1 output vector. For example :

function v=matlab_func(u)

- If you have more than one input, use the "mux" blocks to create a single bus.
- "MATLAB Fcn" blocks can be convenient for complex equations but are slow to execute.

S Functions

- Similar to M-functions, S-Functions provide a method of programming dynamic equations easily.
- An S-Function is similar to an M-file with several functions contained in the same file.
- During simulation, Simulink calls particular functions of the S-Function at the appropriate time. For example the mdlInitializeSizes function is called at the start.
- The S-Function can save states between calls. Just like State Space models, the states are used to compute the outputs and the derivatives of the states are computed to update the states at each time step.

Example S-Function File

```
function
   [sys,x0,str,ts]=limintm(t,x,u,flag,lb,ub,xi)
%LIMINTM Limited integrator implementation.
   Example M-file S-function implementing a
2
   continuous limited integrator
%
   where the output is bounded by lower bound
   (LB) and upper bound (UB)
   with initial conditions (XI).
8
8
00
   Copyright 1990-2002 The MathWorks, Inc.
   $Revision: 1.17 $
2
switch flag
 % Initialization %
 case 0
   [sys, x0, str, ts] =
   mdlInitializeSizes(lb,ub,xi);
 % Derivatives %
 case 1
   sys = mdlDerivatives(t,x,u,lb,ub);
 % Update and Terminate %
 case {2,9}
   sys = []; % do nothing
```

```
% Output %
 case 3
   sys = mdlOutputs(t, x, u);
 otherwise
   error(['unhandled flag = ',num2str(flag)]);
end
% end limintm
% mdlInitializeSizes
% Return the sizes, initial conditions, and
   sample times for the S-function.
<u>&______</u>
function [sys,x0,str,ts] =
   mdlInitializeSizes(lb,ub,xi)
sizes = simsizes:
sizes.NumContStates = 1;
sizes.NumDiscStates = 0:
sizes.NumOutputs
                 = 1;
sizes.NumInputs
                 = 1;
sizes.DirFeedthrough = 0;
sizes.NumSampleTimes = 1;
sys = simsizes(sizes);
str = [];
x0 = xi;
ts = [0 0]; % sample time: [period, offset]
```

Example S-Function Continued

```
&_____
% mdlDerivatives
% Compute derivatives for continuous states.
function sys = mdlDerivatives(t,x,u,lb,ub)
if (x \le b \& u \le 0) | (x \ge b \& u \ge 0)
 svs = 0;
else
 sys = u;
end
% end mdlDerivatives
% mdlOutputs
% Return the output vector for the S-function
function sys = mdlOutputs(t, x, u)
```

sys = x;

% end mdlOutputs

mdlDerivatives computes the derivative of the state, x. Simulink does the numerical integration to update state value.

mdlOutputs computes the output variables, in this case it is simply the state, x.

Algebraic Loops

- Problems can occur in Simulink when the input of a block depends on the output of that block at the same time.
- This is called an Algebraic Loop which means that the model contains a loop with no dynamic or delay components in it.
- Simulink may have problems solving these algebraic loops, especially if they are nonlinear.
- Algebraic loops are solved using Newton-Raphson which can dramatically slow down simulation time.

Algebraic Loop Example

Elimination of Algebraic Loops

Algebraic loops can be eliminated in several ways :

- Reformulate equations to remove the loop.
- Add some dynamics to the loop.
- Use the memory block.

- The memory block delays the signal by one time step. This effectively removes the algebraic loop.
- However, the memory block may adversely affect the accuracy of the results.

Example of Memory Block Usage

Advisor

- NREL has developed an Advanced Vehicle Simulator in Simulink called Advisor.
- You can download Advisor at : <u>http://www.ctts.nrel.gov/analysis/</u>
- Advisor has many model blocks for common vehicle parts, including electric and hybrid vehicles.

(Example Application) SOFC Auxiliary Power Units (APU)

- Project goal is to develop system models and control techniques for an SOFC based APU for long haul trucks.
- Purpose of project is to improve SOFC APU efficiency and durability through better control techniques.
- Using Simulink to implement the models and control.

APU Model

- System model consists of controller, electrical system and APU.
- SOFC model is based on Larry Chick's model from SECA. We extended the thermal aspects to deal with heat up phase and are adding dynamic components to the fuel utilization.
- Reformer model uses a diesel approximate as fuel.
- Electrical system modeling models the power conversion electronics as well as the electrical loads such as air conditioning.

Model Components – Fluid Stream

A central part of the APU model is the fluid stream.

- The fluid stream is a bus containing the required information about a fluid stream such as the anode input to the SOFC.
- The fluid stream bus has 9 elements :
 - 1. Flow Rate (g/s)
 - 2. Temperature (deg C)
 - 3-9. Molar Fraction Composition (elements 3-9 sum to one)

Molar Fraction Composition

- 3. N₂
- 4. H₂
- 5. H₂O
- 6. CO
- 7. CO₂
- 8. Fuel (Diesel, gasoline or CH₄)
- 9. O₂

System Model

APU Model

Reformer

- ► Use single hydrocarbon approximate (C_{12.95}H_{24.38}).
- Lookup tables used to compute composition of reformate based on temperature and O:C ratio.
- Output temperature computed using enthalpies and heats of formation.
- The reformation process considered is a Partial Oxidation – this negates the need for water storage in the APU.
- Anode gas re-circulation can provide some steam, greatly improving the reformation process.

SOFC

- SOFC model is based on Larry Chick's model which was presented this morning.
- Implemented in Simulink as an S-Function.
- Stack block was masked, allowing the user to easily change number of cells in stack and initial temperature. Other parameters can be changed by editing the S-function.
- Model maintains stack temperature as a state and computes the heat transfers from stack to exhaust gases.

VI Curves

Electrical Load Modeling

- An important part of the APU system is the electrical load and power conversion electronics.
- Working with University of Illinois, Chicago to develop very efficient power converters and models in Simulink.
- A major electrical load for an APU is the heating and air conditioning of the cab/living quarters.

Heating/Air Conditioning

Air Conditioner Current Requirements

Model shows the inrush current as compressor turns on.

APU Control

- The APU system is very complex and as electrical load demands change, the operating point of the reformer/fuel cell must be changed appropriately.
- An APU controller must control variables such as: fuel flow rate, reformate composition, cathode flow rate and temperatures throughout the system.
- Many of these variables are dependent on each other, and the controller must respond to potentially fast load changes.

Initial Control

- Using a two phase controller heat up/idle and operating.
- Heat up/idle controller
 - Uses a lookup table based on empirical data to specify desired cathode inlet temp based on stack temp and cathode flow rate.
 - Uses a PID controller to actuate HX bypass valve and control cathode temperature.
- Operating Controller
 - PID control of anode flow rate based on fuel utilization.

Initial Control Strategy

Heat Up Control

Fuel Utilization Control

Summary

- Matlab and Simulink are powerful simulation environments for dynamic systems.
- Simulink's graphical user interface makes it easy to use and models easy to create and change.
- At PNNL we are using Simulink to develop control strategies and model SOFC based APUs for long haul trucks.