Reliability & Durability of Materials & Components For Solid Oxide Fuel Cells

Edgar Lara-Curzio and Miladin Radovic

Metals & Ceramics Division

Oak Ridge National Laboratory

Oak Ridge, TN 37831-6069

SECA Core Technology Program
Pittsburgh, PA. June 19, 2002

Research sponsored by the U.S. Department of Energy, SECA Core Technology Program, under contract DE-AC05-000R22725 with UT-Battelle, LLC

Thanks to Tim Armstrong (ORNL) and Scott Swartz and Matt Seabaugh (NexTech) for supplying test specimens.

Outline

- Objectives
- Approach
- Evaluation of Materials & Components
- Summary
- Future Work

Objectives

In collaboration with industrial teams and other Core Technology Program participants,

- To develop/adapt/recommend test techniques to evaluate the properties and behavior of materials and components for SOFC.
- To identify and understand the mechanism responsible for the failure of materials and components for SOFCs.
- To develop methodologies for predicting the durability and reliability of materials and components for SOFCs.

Background

The failure rate in complex systems usually follows three stages

 a period with decreasing failure rate at the beginning of service life

Approach: Background

Background

The failure rate in complex systems usually follows three stages

- a period with decreasing failure rate at the beginning of service life
- a period with a constant failure rate

Approach: Background

Background

The failure rate in complex systems usually follows three stages

- a period with decreasing failure rate at the beginning of service life
- a period with a constant failure rate
- Increase of the failure rate at the later part of the life cycle.

Approach: Background

Approach

- Identification of mechanism that dominate the failure of SOFC materials and components at short times.
- Identification of mechanisms that dominate the failure of SOFC materials and components at long service times/cycles.
- Integrate information into life-prediction methodologies.

Evaluation of Materials and Components

 Experimental Techniques for Mechanical Characterization of SOFC Materials.

Experimental Techniques for Mechanical Characterization of Materials for SOFC

Infrared Imaging

Experimental Techniques for Mechanical Characterization of Materials for SOFC

Resonant Ultrasound Spectroscopy

Resonant Ultrasound Spectrum

Unique "fingerprint" of each sample.

Depends on:

- Geometry (size and shape)
- •Elastic properties of the material
- Defects

Experimental Techniques for Mechanical Characterization of Materials for SOFC

Biaxial Testing - Ring-on-Ring

- Biaxial Strength
- Effect of defects, temperature and environment on strength.

Experimental Techniques for Mechanical Characterization of Materials for SOFC

Double torsion test

- Fracture toughness, K_{IC}
- Crack Growth

Experimental Techniques for Mechanical Characterization of Materials for SOFC

Indentation Method

Nano-indentation

- Nanohardness
- Young's Modulus
- Fracture Resistance

Characterized Materials

Electrolyte:
 8mol% YSZ - ORNL (4 layers) Ø 1"

Anode:

NiO/8mol% YSZ Cermet-ORNL (2, 4 and 6 layers) Ø 1"

*Ni/8mol% YSZ Cermet-ORNL (2, 4 and 6 layers) Ø 1"

NiO/8mol% YSZ Cermet-NexTech (multilayer) Ø 1"

*Ni/8mol% YSZ Cermet- NexTech (multilayer) Ø 1"

Cathode:

LSM – NexTech (multilayer) Ø 1"

^{*} reduced in hydrogen

Characterized Materials

Disks 1" Ø
 Resonant Ultrasound Spectroscopiy
 Infrared Imaging
 Biaxial strength
 Nanoindentation

Notched Plates
 Fracture toughness

8%mol YSZ - porosity: 8%

Elastic Properties at Room Temperature:

RUS: E = 175 ± 8 GPa

 $G = 67 \pm 3 GPa$

 $v = 0.32 \pm 0.01$

Nanoindentation: displacement ≈800 nm

surface $E = 196\pm6$ GPa $H = 13\pm0.5$ GPa

cross-section E = 176 \pm 4 GPa H = 12.6 \pm 0.5 GPa

A. Selcuk & A. Atkinson, J.Euro.Ceram.Soc. 17 (1997)

8% porosity E= 176 GPa, G=67 GPa

fully dense: E=220 GPa, G=83 GPa

Impulse excitation technique

Biaxial Strength at Room Temperature:

$$\sigma_{ave} = 190\pm82 \text{ MPa}$$

Weibull distribution analysis

Weibull strength: σ_o= 216 MPa

Weibull modulus: m=2.36

Distribution of Strengths

Stress (MPa)

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Blue: "good" spectra -sharp peaks

Pink: spectra with peak splitting and shifting associated with defects in sample

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Crack between two layers.

Tensile surface

1
0.1 mm

Crack Initiation

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

NiO/YSZ Cermet- ORNL (2, 4 and 6 layers; 0.5, 1 and 1.5 mm thick) - 30% porosity

NiO/YSZ Cermet - NexTech (multilayer, 1mm thick)

Elastic Properties at Room Temperature:

RUS*:

ORNL: E = 103 ± 6 GPa G = 40 ± 2.5 GPa $v = 0.29\pm0.03$

NexTech: E = 106 ± 6 GPa G = 41 ± 2.4 GPa $v = 0.29\pm0.01$

A. Selcuk & A. Atkinson, J.Euro.Ceram.Soc. 17 (1997)

Impulse excitation technique - characterized anode 75mol%NiO/YSZ materials up to 14% porosity

Extrapolated data for 30 % porosity:

Exponential law M=M_oexp(-bP): E= 99 GPa, G=38 GPa

Linear law $M=M_o(1-bP)$: E= 76 GPa, G=30 GPa

Non-linear law $M=M_o(1-(bP)/(1+(b-1)P)$: E= 99 GPa, G=38 GPa

Composite Sphere Method (CSM) $M=M_o(1-P^2)/(1+bP)$: E= 83 GPa, G=32 GPa

Elastic Properties at Room Temperature:

Nanoindentation:

NiO/8mol% YSZ Cermet- ORNL

NiO/8mol% YSZ Cermet - NexTech

		Displ., nm	Load, mN	E, GPa	H, GPa
Nex Tech	surface	1200	152	140±34	6.1±3.0
		1100	102	134±41	6.2±4.0
	Cross section	1000	103	132±16	5.2±1.4
		1500	155	112±31	3.4±2.2
ORNL	Surface	1400	158	124±29	4.6±3.0
		1000	104	144±26	5.9±2.9
	Cross section	1000	154	152±23	8.0±3.0
		800	51	147±65	4.0±3.0

Biaxial Strength at Room Temperature:

NiO/8mol% YSZ Cermet – ORNL NiO/8mol% YSZ Cermet – NexTech

Samula	- MDe	Weibull Distribution		
Sample	σ _{ave} , MPa	σ ₀ , MPa	m	
NexTech	145.8±41.8	163.9	3.17	
ORNL 2 layers	107.1±18.0	121.8	4.26	
ORNL 4 layers	110.6±11.0	115.5	9.29	
ORNL 6 layers	112.0±33.0	127.36	3.08	

NiO/YSZ Cermet- ORNL (4 layers; 1 mm thick) - 30% porosity

NiO/YSZ Cermet- ORNL (4 layers; 1 mm thick) - 30% porosity

Double Torsion Testingat Room Temperature:

NiO/YSZ Cermet- ORNL

$$K_{I} = PW_{m} \left[\frac{3(1+v)}{Wt^{4}\xi} \right]^{1/2}, \xi = 1 - 1.26(t/W) + 2.4(t/W) \exp[-\pi W/(2t)]$$

Precracked @ 0.02 mm/min and tested @ 1 mm/min

 $K_{IC} = 1.05 \pm 0.14 \text{ MPam}^{1/2}$

NiO/8mol% YSZ Cermet- ORNL (2, 4 and 6 layers; 0.5, 1 and 1.5 mm thick) reduced in 4% H₂ at 600°C for 4 h

NiO/8mol% YSZ Cermet - NexTech (multilayer, 1mm thick), reduced in hydrogen

Elastic Properties at Room Temperature:

Nanoindentation

NexTech	Displ., nm	Load, mN	E, GPa	H, GPa
surface	2300	155	47±16	1.31±0.4
	1700	103	53±5	1.6±0.4
Cross section	2200	153	54±4	1.4±0.2
	1600	103	47±16	0.9±0.2

Biaxial Strength at Room Temperature:

NiO/8mol% YSZ Cermet- ORNL reduced in 4% H₂ at 600°C for 4 h

NiO/8mol% YSZ Cermet – NexTech reduced in hydrogen

Cample	- MD-	Weibull Distribution		
Sample	σ _{ave} , MPa	σ ₀ , MPa	m	
NexTech	24.5±5.9	27.03	3.96	
ORNL 2 layers	109.9±14.0	122.3	5.51	
ORNL 4 layers	98.5±12.7	104.7	7.25	
ORNL 6 layers	102.9±12	119.9	6.16	

Optical Microscopy

NiO/8mol% YSZ Cermet - NexTech

NiO/8mol% YSZ Cermet- NexTech reduced in hydrogen

NiO/8mol% YSZ Cermet - NexTech

NiO/8mol% YSZ Cermet- NexTech reduced in hydrogen

NiO/8mol% YSZ Cermet- NexTech reduced in hydrogen

Fracture Surface

NiO/8mol% YSZ Cermet- NexTech reduced in hydrogen

SEM - Fractography

Tensile surface

Tensile surface

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

reduced NiO/YSZ Cermet- ORNL (4 layers; 1 mm thick) - 30% porosity

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

LSM - NexTech (multilayer, 1mm thick), reduced in hydrogen

Elastic properties at Room Temperature:

Nanoindentation

NexTech	Displ., nm	Load, mN	E, GPa	H, GPa
surface	2300	155	47±5	1.31±0.4
	1700	103	52±8	1.5±0.3
Cross section	2800	156	48±19	1.4±1.6
	1600	103	59±14	2.3±1.4

Biaxial Strength at Room Temperature:

 $\sigma_{ave} = 19.6 \pm 5.7 \text{ MPa}$

Weibull distribution analysis

Weibull strength: σ_0 = 22.4 MPa

Weibull modulus: m=2.46

Summary

- NDE techniques (infrared imaging, RUS) have been adapted/used to detect defects (e.g. delamination, voids...) in SOFC materials.
 Powerful tools for quality control.
- Test methods have been adapted to determine elastic properties, inplane biaxial strength and fracture toughness of SOFC at RT and elevated temperatures, in air or controlled environments.
- Fractographic analysis were used to identify defects and mechanisms responsible for failure of SOFC materials.
- Methodology can help industrial teams address short term failures to increase reliability of SOFCs. It also constitutes the basis for the evaluation of long-term behavior of these materials.

Summary

Current and Future Work

- Characterization of SOFC materials at high temperatures (strength, fracture toughness, elastic properties) in air/controlled environments.
- Effect of porosity and pore size on elastic properties, strength and fracture toughness.
- Identification of defects and microstructural features responsible for failure.
- Long term reliability, transient, time-dependent phenomena.

