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Objectives

• To develop/adapt/recommend test techniques to evaluate the 
properties and behavior of materials and components for 
SOFC.

• To identify and understand the mechanism responsible for 
the failure of materials and components for SOFCs.

• To develop methodologies for predicting the 
durability and reliability of materials and 
components for SOFCs.

In collaboration with industrial teams and other Core 
Technology Program participants,
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Background

• a period with decreasing failure rate at the 
beginning of service life

The failure rate in complex systems usually 
follows three stages
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Approach: Background

Bathtub Curve
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Background

• a period with decreasing failure rate at the 
beginning of service life

• a period with a constant failure rate

The failure rate in complex systems usually 
follows three stages
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Approach: Background

Bathtub Curve
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Background

• a period with decreasing failure rate at the 
beginning of service life

• a period with a constant failure rate

• Increase of the failure rate at the later part of the 
life cycle.

The failure rate in complex systems usually 
follows three stages
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Approach: Background

Bathtub Curve
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Approach

• Identification of mechanism that dominate the 
failure of SOFC materials and components at 
short times.

• Identification of mechanisms that dominate the 
failure of SOFC materials and components at long 
service times/cycles.  

• Integrate information into life-prediction
methodologies.
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Evaluation of Materials and Components

• Experimental Techniques for Mechanical 
Characterization of SOFC Materials.
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Experimental Techniques for Mechanical 
Characterization of Materials for SOFC

Infrared imaging – IR

Resonant Ultrasound 
Spectroscopy – RUS

(SEM)

Biaxial tests (Ring-on-ring) - ROR

Nanoindentation - NI

Double Torsion - DT

Microscopy – OM and SEM

Defects

Elastic constants

Strength

Young’s Modulus 

Fracture Toughness

Hardness

Fractography

Microstructural 
Characterization

Fracture   
Resistance
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Infrared Imaging

• Crack propagation 
Study

Hot plate

Specimen

IR camera

• Characterization of 
Defects
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Experimental Techniques for Mechanical 
Characterization of Materials for SOFC
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Resonant Ultrasound Spectroscopy
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Unique “fingerprint” of each 
sample.

Depends on:

•Geometry (size and shape)

•Elastic properties of the 
material 

•Defects
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Experimental Techniques for Mechanical 
Characterization of Materials for SOFC

Infrared imaging – IR

Resonant Ultrasound 
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Biaxial Testing – Ring-on-Ring 

•Biaxial Strength

•Effect of defects, 
temperature and 
environment on 
strength.

Loading ring

Specimen

Support ring
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Experimental Techniques for Mechanical 
Characterization of Materials for SOFC

Infrared imaging – IR
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Double torsion test

• Fracture toughness, KIC

• Crack Growth

Load Specimen

Crack
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Experimental Techniques for Mechanical 
Characterization of Materials for SOFC

Infrared imaging – IR

Resonant Ultrasound 
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(SEM)
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Indentation Method

Nano-indentation

• Nanohardness

• Young’s Modulus

• Fracture Resistance
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Characterized Materials
• Electrolyte:

8mol% YSZ – ORNL (4 layers) ∅ 1”

• Anode:
NiO/8mol% YSZ Cermet-ORNL (2, 4 and 6 layers) ∅ 1”

*Ni/8mol% YSZ Cermet-ORNL (2, 4 and 6 layers) ∅ 1”

NiO/8mol% YSZ Cermet-NexTech (multilayer) ∅ 1”

*Ni/8mol% YSZ Cermet- NexTech (multilayer) ∅ 1”

* reduced in hydrogen

• Cathode:
LSM – NexTech (multilayer) ∅ 1”
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Characterized Materials

• Disks 1” ∅
Resonant Ultrasound Spectroscopiy
Infrared Imaging
Biaxial strength
Nanoindentation

• Notched Plates
Fracture toughness
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Characterization of Electrolyte Materials
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Characterization of Electrolyte Materials

8%mol YSZ - porosity: 8%

Elastic Properties at Room Temperature:
RUS: E =175±8 GPa 

G = 67± 3 GPa

ν =0.32 ± 0.01

Nanoindentation: displacement ≈800 nm

surface E =196±6 GPa H =13±0.5 GPa

cross-section E =176±4 GPa H =12.6 ±0.5 GPa

A. Selcuk & A. Atkinson, J.Euro.Ceram.Soc. 17 (1997)

8% porosity E= 176 GPa, G=67 GPa

fully dense: E=220 GPa, G=83 GPa

Impulse excitation technique
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Characterization of Electrolyte Materials

Biaxial Strength at 
Room Temperature:

σave =190±82 MPa

Weibull distribution analysis 

Weibull strength: σo= 216 MPa
Weibull modulus: m=2.36
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Distribution of Strengths

strength mechanical
load

Stress (MPa)
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Characterization of Electrolyte Materials

delamination

Before testing After testing
Failure with branched 
crack formation from the 
loading ring area

Primary crack formation

Secondary crack 
formation and 
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Characterization of Electrolyte Materials
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Characterization of Electrolyte Materials
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Characterization of Electrolyte Materials

0.1 mm

10 µm

5 µm

SEM - Fractography 

Crack between two 
layers. Crack Initiation

Tensile surface
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Characterization of Anode Materials
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Characterization of Anode Materials

NiO/YSZ Cermet– ORNL (2, 4 and 6 layers; 0.5, 1 and 1.5 mm thick) – 30% 
porosity
NiO/YSZ Cermet – NexTech (multilayer, 1mm thick)

Elastic Properties at Room Temperature:
RUS*:

ORNL:  E =103±6 GPa G = 40± 2.5 GPa ν =0.29 ± 0.03

NexTech:  E =106±6 GPa G = 41± 2.4 GPa ν =0.29 ± 0.01

A. Selcuk & A. Atkinson, J.Euro.Ceram.Soc. 17 (1997)

Impulse excitation technique – characterized anode 75mol%NiO/YSZ materials up to 14% porosity

Extrapolated data for 30 % porosity:

Exponential law M=Moexp(-bP) : E= 99 GPa, G=38 GPa

Linear law M=Mo(1-bP) : E= 76 GPa, G=30 GPa

Non-linear law M=Mo(1-(bP)/(1+(b-1)P) : E= 99 GPa, G=38 GPa

Composite Sphere Method (CSM) M=Mo(1-P2)/(1+bP) : E= 83 GPa, G=32 GPa
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Characterization of Anode Materials

Nanoindentation:

Elastic Properties at Room Temperature:

Cross 
section

Cross 
section

Surface

surface
6.1±3.0140±341521200

Nex
Tech

6.2±4.0134±411021100

3.4±2.2112±311551500

4.0±3.0147±6551800

5.9±2.9144±261041000

8.0±3.0152±231541000

4.6±3.0124±291581400

ORNL

5.2±1.4132±161031000

H, GPaE, GPaLoad, mNDispl., nm

NiO/8mol% YSZ Cermet– ORNL
NiO/8mol% YSZ Cermet – NexTech
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Characterization of Anode Materials

mσ0, MPa

3.08127.36112.0±33.0
ORNL 
6 layers

9.29115.5110.6±11.0
ORNL 
4 layers

4.26121.8107.1±18.0
ORNL
2 layers

3.17163.9145.8±41.8NexTech

Weibull Distribution
σave, MPaSample

NiO/8mol% YSZ Cermet– ORNL
NiO/8mol% YSZ Cermet – NexTech

Biaxial Strength at Room 
Temperature:

lnσ
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Characterization of Anode Materials

100µm

NiO/YSZ Cermet– ORNL (4 layers; 1 mm thick) – 30% porosity
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100µm

Characterization of Anode Materials

NiO/YSZ Cermet– ORNL (4 layers; 1 mm thick) – 30% porosity
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Characterization of Anode Materials
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at Room Temperature:
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Characterization of Anode Materials

NiO/8mol% YSZ Cermet– ORNL (2, 4 and 6 layers; 0.5, 1 and 1.5 mm thick) reduced in 
4% H2 at 600oC for 4 h
NiO/8mol% YSZ Cermet – NexTech (multilayer, 1mm thick), reduced in hydrogen

Elastic Properties at Room Temperature:

Nanoindentation

Cross 
section

surface
1.31±0.447±161552300

1.6±0.453±51031700

0.9±0.247±161031600

1.4±0.254±41532200

H, GPaE, GPaLoad, mNDispl., nmNexTech
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Characterization of Anode Materials

mσ0, MPa

6.16119.9102.9±12
ORNL 
6 layers

7.25104.798.5±12.7
ORNL 
4 layers

5.51122.3109.9±14.0
ORNL
2 layers

3.9627.0324.5±5.9NexTech

Weibull Distribution
σave, MPaSample

NiO/8mol% YSZ Cermet– ORNL reduced in 4% H2 at 
600oC for 4 h
NiO/8mol% YSZ Cermet – NexTech reduced in 
hydrogen

Biaxial Strength at Room 
Temperature:
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Characterization of Anode Materials

Optical 
Microscopy 

0.5 mm

50 µm

NiO/8mol% YSZ Cermet– NexTech 
reduced in hydrogen

50 µm
50 µm

NiO/8mol% YSZ Cermet – NexTech
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Characterization of Anode Materials

SEM 
Back Scattered 

⇐ ⇒

SE
⇐ ⇒

NiO/8mol% YSZ Cermet – NexTech NiO/8mol% YSZ Cermet– NexTech 
reduced in hydrogen

Interlaminar

porosity
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Characterization of Anode Materials

NiO/8mol% YSZ Cermet– NexTech 
reduced in hydrogen

Fracture Surface 
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Characterization of Anode Materials

Tensile surface

Tensile surface

0.5 mm

0.5 mm 0.1 mm

NiO/8mol% YSZ Cermet– NexTech 
reduced in hydrogen

SEM - Fractography 
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reduced NiO/YSZ Cermet– ORNL (4 layers; 1 mm thick) – 30% porosity

Characterization of Anode Materials

800µm

Tensile 
surfaces

60µm
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Characterization of Cathode Materials
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Characterization of Cathode Materials

LSM – NexTech (multilayer, 1mm thick), reduced in hydrogen

Elastic properties at Room Temperature:

Nanoindentation

Cross 
section

surface
1.31±0.447±51552300

1.5±0.352±81031700

2.3±1.459±141031600

1.4±1.648±191562800

H, GPaE, GPaLoad, mNDispl., nmNexTech
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Characterization of Cathode Materials

Biaxial Strength at Room 
Temperature:

σave =19.6±5.7 MPa

Weibull distribution analysis 

Weibull strength: σo= 22.4 MPa
Weibull modulus: m=2.46
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Summary

• NDE techniques (infrared imaging, RUS) have been adapted/used
to detect defects (e.g. delamination, voids…) in SOFC materials.  
Powerful tools for quality control.

• Test methods have been adapted to determine elastic properties, in-
plane biaxial strength and fracture toughness of SOFC at RT and 
elevated temperatures, in air or controlled environments.

• Fractographic analysis were used to identify defects and 
mechanisms responsible for failure of SOFC materials.

• Methodology can help industrial teams address short term failures to 
increase reliability of SOFCs.  It also constitutes the basis for the 
evaluation of long-term behavior of these materials.
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Summary

Bathtub Curve
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Current and Future Work

• Characterization of SOFC materials at high 
temperatures (strength, fracture toughness, elastic 
properties) in air/controlled environments.

• Effect of porosity and pore size on elastic properties, 
strength and fracture toughness. 

• Identification of defects and microstructural features
responsible for failure.

• Long term reliability, transient, time-dependent 
phenomena.
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