Development of Low-Cost Alloy Supported SOFCs

Steve Visco, Craig Jacobson, Lutgard C. De Jonghe

Materials Sciences Division
Lawrence Berkeley National Laboratory
1 Cyclotron Road, Berkeley, CA 94720

sjvisco@lbl.gov, dejonghe@lbl.gov, cpjacobson@lbl.gov

Presented at SECA workshop,
June 18, 2002, Pittsburgh, PA
LBNL Staffing

Principal Investigators
Steve Visco, Lutgard De Jonghe

Staff Scientists
Peggy Hou
Xiao-Feng Zhang

Senior Technical Staff
Craig Jacobson

Technical Staff
Inna Belogolovsky

Visiting Scientist and Post Docs
Igor Villareal, Mariza Marrero-Cruz, Keiji Yamahara
Feng Zhang

Graduate Students
Andy Leming, Yuriy Matus, Liming Yang, Xuan Chen

Undergraduate Students
William Hou, Anup Goel, Kaveh Milaninia, Hoover Lee, Eric Hong, Scott Heise, In-Chieh Chen, MK Kim, David Blum, Johnathan Pierce
Background: Accomplishments
Co-fired Thin-Film Structures by Colloidal Deposition

NiO/YSZ substrate (pressed)
NiO/YSZ fired at 950 °C
NiO/YSZ substrate with green YSZ film
NiO/YSZ-YSZ bilayer fired at 1400 °C

- Geometry Independent
- Low Cost
- Scaleable

Dip-coat, aerosol spray, EPD...
Intermediate Temp: 750 to 850 °C; PLANAR

Ni-YSZ/YSZ/LSM-YSZ Thin-film Cell at 800 °C
Thin-film Ceria Cell Performance: 650 - 800 °C

![Graph showing power density vs. current density for different temperatures (600, 650, 700, 750, 800 °C). The graph indicates a peak in power density at around 650 °C.]
Integrated Program Overview
DARPA: Integrated MicroPower Generator

Task 8: Explore Colloidal and co-firing Fabrication Routes for SCFC MEAs

- partially sintered porous NiO-SDC cermet
- co-sinter in air
- apply cathode
- deposit colloidal SDC
- final sinter in air
- composite single chamber fuel cell membrane

Optimized Cathode
Thin SDC
Ni-SDC

Kick-off, Jan. 28, 2002
Praxair NIST-ATP
Advanced Electrolytic System for Combined Oxygen Separation and Compression

Project Objectives

The principal project objective is to develop the technology for a new, point-of-use, oxygen generator and electrochemical compressor that will economically and efficiently replace the practice of supplying oxygen by cylinders and liquid. The end goal of the project is to demonstrate the technology in a pre-commercial, pilot-scale integrated system.
Ikerlan: Residential Fuel Cell System

Ferritic steel (FeCr) support

Fire on cathode (reducing/oxidizing)

Ni-YSZ (CH\textsubscript{4} catalyst)

YSZ Electrolyte (dense)

Air Electrode (LSM-YSZ, FeCr, etc.)

Sinter tube in reducing furnace at 1200 to 1400 °C
NETL Program
BASIC STACK COST/PERFORMANCE RELATIONSHIP

- Membrane cost per square foot
- Stack cost ($/kW)
- Power density (W/cm²)
- Commercialization domain

- Target Cost limit
- Stretch Cost limit
- Cost excessive
- Excessive membrane areas
- Unrealistic power densities
The LBNL group has recently developed a novel approach to SOFC fabrication where mechanically robust and inexpensive metal alloy electrode supports are used in the construction of the SOFC stack.

Use of porous alloy support should increase the strength and toughness of the stack as well as greatly increase the electronic and thermal conductivity, decreasing losses due to current collection and improving thermal management of the stack.

Alloy support structures should allow novel sealing technology including welding, brazing, and even crimp seals. Seals have been one of the biggest barriers to planar SOFC technology and innovative designs are needed.

The purpose of the initial work was to demonstrate proof of the principle and identify needed research.
Fabrication of Low-Cost Planar SOFC

Co-fire tri-layer

- YSZ electrolyte (10 - 15 µm)
- Ni-YSZ electrode (10 - 20 µm)
- Porous high strength commercial alloy or metal-ceramic support (1 - 2 mm)

Add cathode

Low-cost, high performance SOFC

The anode in Ni-YSZ supported thin-film cells must be maintained in reducing environments; whereas alloy support is oxidation resistant allowing cool-down and thermal cycling in the presence of air.
Fabrication of Thin-film Metal SOFC

FeCr + binder → 250°C in air → Pre-fired FeCr

Ni-YSZ-M$_2$O$_3$

Co-fire → 1250°C in H$_2$ → tri-layer

electrolyte layer

YSZ thin-film → catalyst layer

Metal SOFC

Burnout @ 600°C in air
LBNL Group has fabricated porous alloy supports in a variety of shapes
Commercial “Pall” Tube Microstructure
Porous Metal Filters Available Commercially

- Area = 550 cm2
- 0.5 cm seal
- 500 cm2 active
- 0.3 to 0.5 W/cm2 = 150 to 250 W/plate
- 4 to 7 plates/kW
LBNL Welded Porous FeCr SOFC Support Tube

Weld

Porous FeCr SOFC support
Issues Under Investigation

- Processing of alloy/electrode/electrolyte structure
- Electrical, mechanical, and corrosion properties of porous alloy support
- Porous alloy/electrode interface stability
- Constrained sintering of dense electrolytes and porous electrodes
- Adhesion strength of porous alloy/metal and ceramic interfaces
- Stable, well bonded, high performance cathodes operating at 650-750°C
- Cathode current collector protective coating (prevent chromium evaporation)
- Sealing alloy supported cells using welding, brazing, crimping, etc.
Proof of principle has been demonstrated.
Proof of principle has been demonstrated

Alloy Supported Thin Film Fuel Cell
Anode: H₂/3%H₂O Cathode: air

![Graph showing cell potential vs current density for different temperatures (700 C, 750 C, 800 C, 850 C, 900 C). The graph illustrates the relationship between cell potential and current density at these temperatures.](image-url)
Electrochemical Characterization of Metal-based YSZ Cells

OCV = 1.1061 V

- Anode: FeCr
- Cathode: Ni-YSZ-M$_2$O$_3$
- Ref

Graph showing voltage and current density with power density vs. current density.
Power Density of Metal-Based SOFCs

- **Corrected Power Density**

- **Reference potential**

- **Cell potential**

- **0.7 volts**

- **Extrapolation**

- **Majority of Polarization from Pt Cathode**

 due to sintering in reducing environment
related work elsewhere

The Use of Plasma-Spray to Fabricate Metal Electrode Supported SOFCs

![Diagram of SOFC design with labels: Bipolar plate, Contact layer, Cathode, Electrolyte, Anode, Porous substrate, Fuel gas supply, Protective layer, Sealant layer.

Figure 1. Principle of the SOFC design according to the DLR spray concept: overview (a) and detailed view (b).

Figure 2. Optical micrograph of a metallographic cross-section of an entirely plasma sprayed thin-film cell.

Plasma-spray is too expensive to meet SECA cost targets.
Figure 4. Performance of a VPS thin-film cell (YSZ/Ni anode, YSZ electrolyte, YSZ/LSM cathode) with H₂/air as the operating gases in dependence of temperature.
Metallic Supported Tile Design
Use existing thin-film cells bonded to perforated sheet

Advantages of Tile Design
• Sealing
• Manufacturing small pieces
• Existing thin-film technology
• Lower tolerances required
• Lower stress per tile
• Flexible sheet formed
• Non-catastrophic failure (parallel design)
• Tailored catalyst over cell area
Alloys for porous support and/or interconnect

- Ferritic steels with 16-26 wt% Cr are starting point.
- 430 Stainless Steel (Fe18Cr) is base alloy being investigated (steel powders with 16-30 wt% Cr of various particle sizes and type 430 and 444 sheet in hand)
- Alloys such as type 439, 441, 444, 446, 453, etc are modified with various stabilizers, reactive elements, Cr up to 26%, etc.
- Typical alloy applications: automotive exhaust manifold, heat exchanger tubing, hot water tanks, etc.
- Typical alloy properties
 - TEC ~12 ppm/°C to 800°C
 - 7.6-7.8 g/cc
 - Thermal conductivity ~20 W/m•K
 - Electronic conductivity ~12,500 S/cm at RT and ~ 9,000 S/cm at 800°C
- Strength drops above 600°C, but this is not a high strength application (<1 ksi!)
- Oxidation limits uncoated alloys ≤ 800°C
ASR of uncoated and Y/Ni coated Ebrite
One concern is the failure of the porous alloy due to oxidation of the sintered necks. Is data available to guide us? Yes.

Small necks will pinch off and lose electrical contact.

Steel alloy

Oxide scale

50 μm foil is cycled between RT and test temperature in air. Failure occurs when oxidizes through and foil breaks. This type of oxidation test previously developed gives an indication of the maximum operating temperature for a given neck size. In this case a 50 μm neck should be stable up to ~875°C for thousands of thermal cycles.
Corrosion of FeCr in Moist Air

Cr$_2$O$_3$ scale

O$_2$ \[\rightarrow \] O$_2$/H$_2$O \[\rightarrow \] CrO$_2$(OH)$_2$

FeCr Interconnect plate

LBNL is monitoring weight loss of Cr$_2$O$_3$ in moist air at 800 °C

Harmful to environment
Can poison cathode

Need inexpensive coating technology
Vapor species in equilibrium with Cr_2O_3 in 0.1 bar H_2O, 0.1 bar O_2 at 1 bar total pressure

$$\frac{1}{2} \text{Cr}_2\text{O}_3 + \text{H}_2\text{O} + \frac{3}{4} \text{O}_2 = \text{CrO}_2(\text{OH})_2$$

$$\frac{1}{2} \text{Cr}_2\text{O}_3 + \frac{1}{2} \text{H}_2\text{O} + \frac{1}{2} \text{O}_2 = \text{CrO}_2(\text{OH})$$

$$\frac{1}{2} \text{Cr}_2\text{O}_3 + \frac{3}{2} \text{H}_2\text{O} + \text{O}_2 = \text{CrO(OH)}_3$$

$$\frac{1}{2} \text{Cr}_2\text{O}_3 + \frac{3}{4} \text{O}_2 = \text{CrO}_3$$
Protective Coatings for Cathode Current Collectors

• We want to use FeCr stainless steel as current collector in SOFC with LSM cathode.

• The disadvantage is \(\text{Cr}_2\text{O}_3\) evaporation during SOFC operation.

• A dense coating with proper electrical conductivity and thermal expansion is needed to prevent \(\text{Cr}_2\text{O}_3\) evaporation.

• Possible candidates are doped chromite or Cr-based spinels
Spinel coatings at the interface of LSM cathode and FeCr current collector

Mn-Cr-O, Mn-Co-Cr-O, Co-Cr-O, Mn-Co-O spinel are promising coating materials for FeCr current collector. Two goals should be reached.
1) A dense layer of spinel should be formed between FeCr and LSM to block the evaporated Cr oxide to diffuse into LSM.
2) The spinel layer should have enough conductivity at least bigger than usual coating materials such as La-Cr-O.

LSM green power sintered on dense FeCr stainless steel at 1200°C/4h in air results in porous MnCr spinel layer. Chromium oxyhydroxide evaporation is not prevented.
LSM Cathode and FeCr Interfacial Reactions

LSM reacts with the alloy to produce a porous spinel coating.

EDS shows a porous layer of MnCr$_2$O$_4$ spinel formed at the interface, this is insufficient for preventing chromium evaporation...

Can this spinel be made dense to prevent Cr$_2$O$_3$ from evaporating?

Does the spinel have enough electronic conductivity?

Does the thermal expansion of the spinel match that of the cathode?

This works will determine the suitability of various spinels for this application and then seek means of creating dense layers on FeCr alloys.
One approach is to obtain a dense coating of the desired spinel.

X-ray of MnCr$_2$O$_4$ spinel made by GNP synthesis. This powder is then applied to the alloys surface and sintered.

SEM of MnCr$_2$O$_4$ and FeCr interface sintered at 1200$^\circ$C/4h in air.
A second approach is to deposit a continuous Mn-oxide layer and grow a continuous layer of the desired spinel.
Protective Coating

Future Work

• Measure the electrical conductivity and thermal expansion of MnCr$_2$O$_4$ spinel

• Test whether this MnCr$_2$O$_4$ spinel layer is effective in preventing Cr evaporation

• Develop a low-cost, effective method of creating the MnCr$_2$O$_4$ on FeCr current collectors
NETL Cathode Studies

Purpose: Stable, high performance cathodes for operation between 650-750°C

Basic Problem: High performance cathodes involve unstable microstructures and/or chemical and thermal expansion incompatibility with YSZ

- Preparation of YSZ thick electrolyte discs with controlled surface
- Basic electrochemical studies using Ag, Pt, Pd-Ag, and Au as electrodes
- Study the effect of bulk and surface additives on the electrochemical performance of LSM and LSM + YSZ on YSZ symmetric cell
- Preparation of LSM + YSZ electrodes with and without bulk additives such as: LSCF, CGO, and Co$_2$O$_3$
- Preparation of LSM electrodes with and without surface additives such as CoO/Co$_2$O$_3$
Surface Doped Electrode Fabrication

1) Die press YSZ disk
2) Sinter disk at 1500°C
3) Polish disk (30 µm)
4) Spray cathodes
5) Sinter cathodes at 1200°C
6) Attach platinum current collectors and reference
7) Fire at 950°C
8) Dope cathodes with cobalt solution
9) Fire at 600°C

Related prior art:
ELECTRODE STRUCTURE FOR SOLID STATE ELECTROCHEMICAL DEVICES,
U.S. Pat. No. 5,670,270. Dow Chemical Company
Proposed O_2 Reaction Mechanism

- Highlights
 - O_2 surface diffusion to active site
 - Charge transfer
 - O^- diffusion through LSM to YSZ
- Cobalt increases ionic conductivity and δ
- Critical question: *Is this strictly a surface effect or does the Co diffuse into the bulk and alter the LSM composition?* This has implication for long-term stability of these doped electrodes.
NETL Projects April-June 2002

Scale-up and automate process
1. Tape casting of metal supports
2. Automated screen printing of electrodes
3. Automated spray deposition or electrodes and electrolytes
<table>
<thead>
<tr>
<th>Activity Name</th>
<th>Start Date</th>
<th>Finish Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development of Planar Metal supported SOFC</td>
<td>5/1/02</td>
<td>10/31/02</td>
</tr>
<tr>
<td>Fundamental electrochemical studies (AC impedance, I-V)</td>
<td>5/1/02</td>
<td>8/30/02</td>
</tr>
<tr>
<td>Refinement of anode composition</td>
<td>5/1/02</td>
<td>7/31/02</td>
</tr>
<tr>
<td>Refinement of cathode composition</td>
<td>7/1/02</td>
<td>8/21/02</td>
</tr>
<tr>
<td>Development of low-Temp cathode (500 to 650°C)</td>
<td>8/1/02</td>
<td>8/30/02</td>
</tr>
<tr>
<td>Electrode composition defined</td>
<td>8/30/02</td>
<td></td>
</tr>
<tr>
<td>Metal-Ceramic SOFC Development</td>
<td>5/1/02</td>
<td>10/31/02</td>
</tr>
<tr>
<td>Single metal supported cells @ 300 mW/cm²</td>
<td>7/31/02</td>
<td></td>
</tr>
<tr>
<td>2-cell planar metal supported SOFC stack @ 300 mW/cm²</td>
<td>10/31/02</td>
<td></td>
</tr>
<tr>
<td>Real-time GC mass spec analysis of fuel exhaust stream</td>
<td>8/1/02</td>
<td>9/30/02</td>
</tr>
<tr>
<td>Seal Development</td>
<td>7/1/02</td>
<td>9/30/02</td>
</tr>
<tr>
<td>Development of insulating metal gasket/seal</td>
<td>7/1/02</td>
<td>9/30/02</td>
</tr>
<tr>
<td>Seal defined</td>
<td>9/30/02</td>
<td></td>
</tr>
<tr>
<td>Interconnect Development</td>
<td>5/1/02</td>
<td>8/30/02</td>
</tr>
<tr>
<td>Development of coating for metal interconnect</td>
<td>5/1/02</td>
<td>8/30/02</td>
</tr>
<tr>
<td>Microbalance measurements of Cr evaporation</td>
<td>7/15/02</td>
<td>8/30/02</td>
</tr>
<tr>
<td>Interconnect coating defined</td>
<td>8/30/02</td>
<td></td>
</tr>
</tbody>
</table>

Disk: 300 mW/cm²

Stack: 300 mW/cm²
Summary

• Proof of principle: low-cost alloy support architecture effective

• Support-plate concept: Ni-YSZ, LSM, and alloy bonding demonstrated

• Evaluation of cathode-interconnect interface initiated: conductive spinel interlayer expected to be effective

• Development of stable, high performance cathode for 650-750°C operation

• Invention disclosure: IB-1790: Support for planar fuel cells
Future work

- Improve low-cost alloy support architecture
- Support-plate concept: integrate in functioning fuel cell
- Continued development of cathode-interconnect interface
- Continued development of intermediate temperature cathodes
- Constrained sintering of electrolyte film on metallic support electrode structure