Solid State Energy Conversion Alliance

Workshop Proceedings June 1-2, 2000 • Baltimore, Maryland

Pacific Northwest National Laboratory Operated by Battelle for the U.S. Department of Energy

U.S. Department of Energy

National Energy Technology Laboratory

August 2000

Dear SECA Workshop Participant:

The National Energy Technology Laboratory (NETL) and the Pacific Northwest National Laboratory (PNNL) are pleased to provide the proceedings of the Solid State Energy Conversion Alliance (SECA) Workshop held on June 1-2, 2000 in Baltimore. The package includes the presentations made during the workshop, a transcript of the Question and Answer session, additional discussion concerning intellectual property, and the breakout session results that were developed for materials and manufacturing, fuel processing, modeling and simulation, power electronics, and thermal systems. We have attempted to accurately capture all the ideas and comments expressed during the workshop. A list of participants is also included. If you note any omissions or wish to provide additional information, we welcome your comments.

We are analyzing these results and developing the industrial team solicitation. Our current plan is to hold the solicitation open for three years with an opportunity to propose once each year. This will allow both a longer period for formation of teams and the addition of teams corresponding to the available budget and the addition of more government co-sponsors. We hope that all stakeholder groups will use the enclosed information in their planning endeavors as well. In order to permit careful review of the Workshop results and to consider other input, the date for issuing the solicitation for public comment is now mid-to-late August. Further details and updates will be available at the NETL website: www.netl.doe.gov.

We sincerely appreciate your active participation in the workshop and the breakout work sessions. Over 170 participants from more than 100 organizations representing various stakeholders groups provided a wealth of information and opinions. This collaboration among stakeholders groups will undoubtedly accelerate the planning for and the ultimate realization of SECA.

The tentative date for the next SECA workshop is April 2^{nd} and 3^{rd} 2001 in the Washington DC area. We look forward to your future participation in SECA.

Sincerely,

Wayne A. Surdoval SECA Project Manager

Solid State Energy Conversion Alliance (SECA)

WORKSHOP PROCEEDINGS

June 1-2, 2000 The Holiday Inn Inner Harbor Baltimore, Maryland

National Energy Technology Laboratory Pacific Northwest National Laboratory The National Energy Technology Laboratory (NETL) and the Pacific Northwest National Laboratory (PNNL) hosted the Solid State Energy Conversion Alliance (SECA) workshop on June 1-2, 2000 to gather stakeholder input on the opportunities and challenges for achieving the goal of low-cost, broadly marketable fuel cells by 2010. These workshop proceedings include all of the speaker presentations, question and answer (Q&A) documentation, a discussion of the intellectual property issues, and two appendices for the breakout session results and the participant list. The Department of Energy (DOE) will use the breakout group results from the workshop as input to the preparation of technology plans and program solicitations to implement SECA. The proceedings will also be made publicly available.

Background

SECA is envisioned as a collaboration of government agencies, industry, universities, and national laboratories committed to the development of low-cost, high power density, solid-oxide fuel cells for a broad range of applications. Industrial teams, research and development performers, and funding organizations are part of the alliance. SECA has been formed to both accelerate the development of the industrial base needed to commercially produce low-cost solid-oxide fuel cells and to provide a core research program to provide any advancements necessary to achieving the aggressive SECA goals. The two host laboratories, NETL and PNNL, are the driving force behind SECA, providing the leadership, focus, and integration needed to bring solid-oxide fuel cell technology into near-term markets.

A Vision for Fuel Cells in 2010

Low-cost, high-efficiency, solid-state fuel cell systems will be available at less than \$400/kW for stationary, transportation, and military applications. This breakthrough will allow widespread penetration into these high-volume markets, ultimately leading to application of advanced fuel cell technology in "Vision 21" central-station power plants. The inherently high efficiencies of these solid-oxide fuel cells will provide significantly reduced CO₂ emissions and negligible emissions of other pollutants.

The basic building block will be a nominally 5 kW solid-oxide fuel cell module that can be mass-produced and used for residential, mobile, or military applications. For applications with larger power needs, the mass-produced core modules will be interconnected much like batteries, thus eliminating the need for custom designed fuel cell stacks to meet a specific power rating. SECA technology will ultimately lead to megawatt size configurations for commercial/light industrial packages and "Vision 21" central-station power applications.

Workshop Breakout Sessions

Seven breakout sessions were held:

- Materials and Manufacturing Session A
- Materials and Manufacturing Session B
- Fuel Processing Session A
- Fuel Processing Session B
- Modeling and Simulation
- Power Electronics
- Thermal Systems

Through a series of breakout group sessions, over 120 participants collaboratively addressed the following questions:

- What are the scientific and technology issues that exist for achieving the SECA vision by 2010?
- What are the research and development (R&D) opportunities?
- What engineering, development, and research actions are required to address the identified issues and opportunities?

The following definitions were used to characterize the maturity of the different components of the solidoxide fuel cell technology identified in the breakout sessions:

- Engineering: something that has not been done before but can be solved by existing engineering procedures,
- Development: something that requires development of methodologies or extensive data gathering but a path to solution is clear,
- Research: problem areas for which there is no clear path to success and require new approaches.

Workshop Breakout Sessions Results

For each session, a summary is provided in Appendix A along with the "storyboard" results for issues; R&D opportunities; engineering, development, and research actions needed for implementation; and group "report-outs." Every effort has been made to represent the results of the consensus voting fairly and accurately without any individual influences or biases. Therefore, minimal narrative summary is provided since at some level a more extensive summary would represent an individual interpretation of the results. This results in a relatively "dry" report; however, it is one that we and hopefully others will find useful.

WORKSHOP PROCEEDINGS SOLID STATE ENERGY CONVERSION ALLIANCE WORKSHOP JUNE 1-2, 2000

CONTENTS

Exec	cutiv	ve Summary	I		
I.	Presentations1				
	A.	Fossil Energy Mission and the Fuel Cell Program George Rudins, Deputy Assistant Secretary for Coal and Power Systems U.S. DOE, Office of Fossil Energy	1		
	B.	Keynote Address: The Solid State Energy Conversion Alliance (SECA): Its Structure, Target Applications, and Role in DOE's Strategic Plan Rita A. Bajura, Director U.S. DOE, National Energy Technology Center	5		
	C.	U.S. DOE, Office of Transportation Technology, Fuel Cells for Transportation Program Patrick Davis, Program Manager U.S. DOE, Energy Efficiency & Renewable Energy	. 22		
	D.	SECA: Transportation Applications Donald P. McConnell, Associate Laboratory Director Pacific Northwest National Laboratory	. 29		
	E.	Solid Oxide Fuel Cells and Department of Defense Applications	. 37		
	F.	Solid Oxide Fuel Cells and Stationary Applications W. Peter Teagan, Arthur D. Little, Inc.	.43		
	G.	 Industry Presentations: Fuel Cell Markets	53 61		
	Н.	SECA: Near-Term Program Opportunities Wayne A. Surdoval, SECA Project Manager, U.S. DOE, National Energy Technology Laboratory	.72		
II.	SE	CA: Question and Answer Session	76		
III.	Int	ellectual Property Fact Sheet	82		

WORKSHOP PROCEEDINGS SOLID STATE ENERGY CONVERSION ALLIANCE WORKSHOP JUNE 1-2, 2000

CONTENTS (CONTINUED)

APPENDICES

Appendix A – Breakout Session Results	A-1
I. Materials and Manufacturing – Session A	A-2
II. Materials and Manufacturing – Session B	
III. Fuel Processing – Session A.	
IV. Fuel Processing – Session B	A-25
V. Modeling and Simulation	
VI. Power Electronics	A-39
VII. Thermal Systems	A-46
Appendix B – Participants	B-1

A. FOSSIL ENERGY MISSION AND THE FUEL CELL PROGRAM George Rudins, Deputy Assistant Secretary for Coal and Power Systems U.S. DOE, Office of Fossil Energy

1. Introduction

- I'm pleased to be here at the Solid State Energy Conversion Alliance Workshop. I'd like to thank Rita Bajura, Director of the National Energy Technology Laboratory, for inviting me to speak about this exciting new DOE initiative.
- Later speakers will discuss in some detail the structure and applications of the Solid State Energy Conversion Alliance, or SECA. I would like to speak about SECA in a larger context: how it fits into the national energy strategy, and the goals and milestones of the fuel cell program.
- 2. Comprehensive National Energy Strategy
- The Comprehensive National Energy Strategy, issued in April 1998, set forth five common-sense goals for national energy policy:
 - Improving energy efficiency.
 - Ensuring reliability.
 - Promoting clean energy technologies.
 - Expanding energy choices.
 - Cooperating internationally on energy issues.
- Fuel cells, and SECA, help us meet all five of these important goals:
 - Fuel cells are highly efficient. With thermal recovery, the total efficiency of fuel cell systems could reach 85%.
 - Fuel cells promise to be one of the most reliable power generation technologies, if not the most reliable. They are now being used by hospitals, hotels, and telephone companies as part of critical uninterruptible power systems. SECA will result in distributed generation products that will further increase grid reliability and safety.
 - Fuel cells are clean. They generate no solid wastes, and have dramatically lower emissions of nitrogen compounds, particulates, and greenhouse gases.
 - Fuel cells expand energy choices. They can be used in both distributed and centralized configurations. They provide siting and fuel flexibility. They allow us to use our abundant fossil-fuel resources in an environmentally friendly way.

- Fuel cells address environmental issues of global concern, including emissions of greenhouse gases. They are well suited for developing countries without an existing energy infrastructure, and will help meet a growing worldwide demand for energy. SECA will be an internationally cooperative effort. Through the SECA Core Technology Program, we expect to cooperate with the European Union, and others.
- 3. Near-Term Distributed Generation Market
- Given fuel cells' strengths, the abundance of fossil-fuel resources, and the need for highly efficient, clean energy technologies, the Department of Energy has funded fuel cell research for over two decades.
- The current fuel cell program is aimed at the near-term distributed generation market. The near-term market includes premium power applications: computer centers, hospitals, and other facilities that must have a reliable supply of high-quality electricity and are willing to pay for it.
- The current FE fuel cell program, now in the last phase of development, has two parts:
 - development of molten carbonate fuel cell systems, by Fuel Cell Energy, and
 - development of tubular solid oxide fuel cell systems, by Siemens Westinghouse.
- The program's goals are:
 - Commercialization of solid oxide fuel cell and molten carbonate fuel cell power plants in the 200-kW to 3-MW range by 2003.
 - Costs of \$1,000 to \$1,500 per kilowatt.
 - Efficiencies of 50 to 60%.
 - To have at least 50 MW per year of U.S. molten carbonate fuel cell manufacturing capacity, and to have at least 30 MW per year of U.S. solid oxide fuel cell manufacturing capacity by 2003.
- The U.S. and European growth and replacement market for near-term distributed generation is expected to approach 10 GW per year over the next decade. Globally it is expected to be 20 GW per year.
- The near-term developers, Fuel Cell Energy and Siemens Westinghouse, have had impressive test performance, and each plans multiple demonstrations within the next few years. Collectively, they could be capturing 1 to 2 GW per year of the global market by the end of the decade.
- 4. The Mature Distributed Generation Market
- To penetrate the mature distributed generation market, lower cost fuel cells are required. Distributed generation technologies must have low introductory and installation costs, and they must be reliable.

• SECA, which Ms. Bajura will describe in more detail, is a mechanism to build and integrate the industry base for low-cost fuel cells to penetrate the mature distributed generation market. SECA will build an alliance of government agencies, commercial developers, universities, and national laboratories to develop solid oxide fuel cells with the capability for immediate commercial success. SECA will build on the great progress to date in developing fuel cells and will assure a dramatic reduction in fuel cell cost down to \$400/kW for stationary power applications, which in turn should guarantee a very large market share for fuel cells.

The alliance will provide a focal point, an "organizational center" for the development of

- stationary power applications,
- auxiliary power units for military applications, and
- auxiliary power units for transportation applications.
- All three applications will benefit from the free flow of leveraged fuel cell technology development. SECA's cost goal for stationary applications is \$400 per kilowatt by 2010. Long-term cost goals for military and transportation applications are \$50 to \$200 per kilowatt. Efficiencies for all applications will be greatly improved over current state-of-the art.
- The results of this program will also provide early low-cost power systems for mature distributed generation market applications, and will feed directly into the Vision 21 Fuel Cells Program.
- 5. Vision 21
- Fossil fuels currently provide 85% of global and U.S. energy supply. Even under a climate change scenario, we will need to use fossil energy well into the future. But we need to use it smarter. The goal of Vision 21 is to wring every possible bit of useful energy out of carbon-based feedstocks to produce energy products, while eliminating all environmental concerns regarding electricity generation, and doing so at comparative costs.
- The Vision 21 fuel cells segment will develop advanced fuel cell modules that would be integrated with other Vision 21 advanced technology modules, and would be tailored to meet specific market needs. Fuels cells are needed to obtain the 60% efficient coal-fueled and the 75% gas fueled Vision 21 power plants of the future.
- To reach these high efficiency targets, a hybridized, high-efficiency fuel cell is required. Getting the cost of the fuel cell power module to \$400 per kW is a key factor in deploying Vision 21 systems by 2015. If this can be done, fuel cell/turbine hybrids could replace turbines as the power block in integrated gasification combined-cycle applications.
- These highly efficient combined systems, in multi-megawatt sizes, would have no environmental impact outside their own footprint. The goal is to make these modules ready for use in integrated systems by 2015. This program segment will accept additional technology input from the SECA program segments as solid state fuel cells become available.

- Fuel cells also have an advantage in Vision 21 sequestration applications. Fuel cells have inherently high efficiency and can also be configured to produce concentrated CO2 streams. Under the recent Vision 21 solicitation, Siemens Westinghouse received an award to reconfigure their tubular solid oxide fuel cell to produce a concentrated CO2 stream for use in enhanced oil recovery and other applications.
- 6. Conclusion
- Part of the Department of Energy's mission is "to foster a secure and reliable energy system that is environmentally and economically sustainable." Fuel cells, and SECA, will help us meet this challenge.
- Fuel cells, with their roots in the space program, have the potential to truly revolutionize power generation. SECA is a natural extension of the existing fuel cell program, a logical next step.
- Thank you for joining us as we take this step into the future.

B. KEYNOTE ADDRESS: THE SOLID STATE ENERGY CONVERSION ALLIANCE (SECA): ITS STRUCTURE, TARGET APPLICATIONS, AND ROLE IN DOE'S STRATEGIC PLAN *Rita A. Bajura, Director*

U.S. DOE, National Energy Technology Center

Slide 1 The Solid State Energy Conversion Alliance: A Paradigm Shift in Technology Development

Good morning. I'm pleased to be here. It is my privilege to present an overview of the Solid State Energy Conversion Alliance, or SECA. I will discuss:

- A vision for the future of fuel cells.
- What the SECA alliance is.
- The concept behind the alliance.
- The proposed structure of the alliance.
- Next steps to initiate the SECA program.

Slide 2 The Vision: Fuel Cells in 2010

Let me start by sharing a vision of the future, a vision of solid-state fuel cell systems in 2010.

- These systems will be low cost: \$400 per kilowatt in the multi-kilowatt size range, a remarkable accomplishment in this small size range. The price trajectory will be downward, such that a \$50 per kilowatt system for transportation applications is on the horizon.
- Fuel-to-end-use efficiencies will be high: nearly twice as high as today's conventional technologies, again a remarkable accomplishment in the multi-kilowatt size range. These high efficiencies translate to reduced greenhouse gas emissions.
- Given a fuel, there will be a fuel-cell system that can operate on it. Fuel cells will be able to operate on natural gas, gasoline, diesel fuel, landfill gas, hydrogen, and defense logistics fuels.

Early movers in the fuel-cell industry will have commercialized them as auxiliary power units for the nation's cars and trucks, distributed generation units for homes, and field power units for military operations.

Slide 3 The Vision: A Core Module for Multiple Applications

The core of this vision is a 5-kilowatt, low-cost, high power-density, solid-state fuel-cell stack. The core module measures approximately 4 by 4 by 12 inches. It can be mass produced because it can be used in multiple end-use markets. Because it is a standard core module, the cost to customize it for multiple markets is cheap.

This concept of "mass customization of common modules" eliminates the Catch-22 of commercialization:

- High-volume production is needed to reduce costs,
- but low costs are needed to create a large market.

The 5-kilowatt core modules can be combined (like batteries) for applications with larger power needs. This "building block" approach enables low-cost customization. This is the Gateway or Dell computer concept applied to fuel cells. Gateway and Dell keep personal computer costs low and meet the exact needs of their customers by applying using the concept of mass customization.

Ultimately, the SECA concept could lead to megawatt-size fuel-cell systems for commercial and industrial applications and Vision 21 energy plants.

This vision is achievable, but it will take a new approach to technology development.

Slide 4 SECA — Realizing the Vision

That approach is SECA – the Solid State Energy Conversion Alliance.

SECA is an alliance of

- industrial teams, who individually plan to commercialize solid-state fuel-cell systems;
- R&D organizations involved in solid-state activities; and
- government organizations, who provide funding.

SECA is a national program that provides a forum to bring these entities together. All are interested in low-cost, high power-density, solid-state fuel-cell systems for some application. All are committed to the concept of "mass customization" as the route to reducing costs.

The high power-density requirement of the SECA program is a critical driver for transportation applications. This sector presents some of the most challenging requirements for the use of fuel cells. For example, a 5-kilowatt unit for auxiliary power must fit into a volume of 50 liters. (The "unit" includes the stack, reformer, and all other balance-of-plant components.) The 5-kilowatt unit must also weigh less than 50 kilograms, and have a surface temperature less than 45 $^{\circ}$ C.

High power-density is not as critical for stationary applications. However, by addressing these challenging requirements for the transportation sector, stationary developers may be able to substantially reduce their costs. Over the course of this workshop, I invite your thoughts on these draft requirements for the transportation sector.

The SECA program develops an integrated strategy to address the technical barriers of solid-state fuelcell systems. SECA also focuses research performers on the breakthrough technologies needed to achieve the program goals.

Two national labs coordinate the SECA program: the National Energy Technology Laboratory (NETL) and the Pacific Northwest National Laboratory (PNNL). They provide the leadership, focus, and integration needed to achieve the goals of the SECA program.

Slide 5 SECA Structure

SECA represents a new model for joint government and private-industry technology development. Through annual workshops such as this, interested stakeholders help develop program goals. This information flows — through the program managers at NETL and PNNL — to the project management at NETL. The project managers coordinate the activities of the Industry Integration Teams and the Core Technology Program.

Each of the vertical bars in the viewgraph represents one Industry Integration Team. Each team is developing a fuel-cell system that they intend to commercialize.

The Core Technology Program (lower left in the viewgraph) consists of a "patchwork quilt" of R&D performers. Their projects address crosscutting technical issues in solid-state fuel-cell systems.

The blue arrows show a "circular" relationship. The Industry Integration Teams communicate their technology development needs to the project managers. The project managers translate these needs into research topics for the Core Technology Program. Participants in the Core Technology Program develop solutions that are transferred back to the Industry Integration Teams.

Slide 6 SECA Industry Integration Teams

Each Industry Integration Team is developing the capability to commercialize a solid-state fuel-cell system. It can be for stationary and/or transportation and/or military applications.

The teams are independent. They compete with each other. However, all are committed to the concept of mass customization as a route to reducing the cost of fuel-cell systems.

These "vertical teams" are competitively selected and will receive funding from interested government organizations, such as DOE's Office of Fossil Energy (FE). Our hope is that DOE's Office of Energy Efficiency and Renewable Energy (EE), and various organizations in the Department of Defense (DOD) will also decide to fund a suite of Industry Integration Teams. We are discussing the possibility of shared

funding with EE and DOD, and are delighted that they are participating in this workshop.

FE is currently developing its first solicitation for Industry Integration Teams. Wayne Surdoval from NETL will discuss this solicitation later this morning. We anticipate that FE will fund two or three Industry Integration Teams as a result of this solicitation. Our hope is other funding organizations will join in this solicitation <u>or</u> issue their own solicitation(s). The number of Industry Integration Teams ultimately selected will depend on the number of government agencies sponsoring the SECA program and their level of commitment.

DOD's Tank Armament and Automotive Command (TACOM) may choose to issue a solicitation for a solid-state fuel-cell module for tanks or other military vehicles.

The SECA program has momentum! "Pre-SECA" R&D work is already underway. Three industry projects in our present program are on a "SECA pathway." They are the Delphi, Honeywell, and McDermott projects. You will hear presentations from these companies later this morning. These organizations are either under contract with us, have a CRADA with us, or have been competitively selected for an award under a previous solicitation. The three projects are likely to be absorbed into the SECA program as Industry Integration Teams.

These three plus an additional two or three give a total of five or six possible Industry Integration Teams funded by FE.

Slide 7 SECA Core Technology Program

R&D performers in the Core Technology Program address the crosscutting technology development needs of the Industry Integration Teams. R&D performers may be:

- universities,
- national labs,
- industry, and
- small businesses.

They will conduct basic and applied R&D. The list of technology development categories we think the R&D performers will need to address includes:

- fuel processing,
- manufacturing,
- controls and diagnostics,
- power electronics,
- modeling and simulation, and
- materials.

This list is draft. I invite workshop participants to tell us if we have the right list of R&D needs.

The projects in the Core Technology Program are competitively selected, and are supported by the same

government agencies that fund the Industry Integration Teams. The target funding split is 40 percent for the Core Technology Program and 60 percent for the Industry Integration Teams.

FE has pre-existing contracts and awards that are relevant to the Core Technology Program. For example, we have projects with the University of Utah and the University of Missouri, and materials work with Honeywell. Our intent is to absorb these projects into SECA.

As a side note, we are successfully using the research model outlined here in our gas turbine program. The Advanced Gas Turbine Research Program is establishing the scientific foundation for 21th century gas turbines. The program is industry driven and involves 95 universities in 37 states. Both FE and EE fund the program. Pre-competitive research areas are defined by an Industry Review Board — the gas turbine manufactures. The South Carolina Institute for Energy Studies coordinates the program for DOE.

Slide 8 Intellectual Property — Cornerstone of the Alliance

SECA's treatment of intellectual property is the cornerstone of the alliance. It is a pilot program. DOE hopes this pilot will become the model for other technology development programs.

In the SECA program, DOE anticipates that all members of the alliance will be granted rights to own any inventions they make under the program. The intellectual property (IP) rights of the Industry Integration Teams are complete. However, those of the Core Technology Program are slightly limited. Participants in the Core Technology Program must be willing to license their patented technologies to any of the Industry Integration Teams, within reasonable time limits and other constraints.

Why this approach to IP? The SECA concept is based on the development of a common fuel-cell core module. This common module is essential to reducing the cost. The core module will be expedited <u>if</u> the technologies developed in the Core Technology Program are available for licensing to the Industry Integration Teams. We believe the Industry Integration Teams will be more likely to identify research needs if they are assured that all solutions will be within reach. This intellectual property approach will open the doors to collaboration!

There are other advantages:

- Technologies developed in the Core Technology Program can be incorporated into any designs that will benefit from them not just into the designs of the highest bidder.
- Research performers in the Core Technology Program will have a ready market for their inventions. They will reap royalties if an Industry Integration Team commercializes a fuel-cell system with their invention.
- This intellectual property arrangement increases the value of a technology. If a technology is important, all of the Industrial Integration Teams will need it to remain competitive.

Slide 9 Solid-State — The Choice for the New Millennium

- I want to examine some underlying questions about the SECA concept. First: Why solid-state? Solid-state fuel cells have several potential advantages:
- Solid-state fuel cells have inherently high efficiencies up to 60 to 70 percent hydrocarbon-toelectric efficiency. Hybrid or staged systems can have efficiencies up to 80 percent.
- Their high temperature simplifies high-temperature reforming of hydrocarbon fuels. The reformer and the fuel cell can be coupled.
- Solid-state fuel cells have easier head management and simpler control systems.

They lend themselves to low-cost manufacturing.

Slide 10 SECA — Now is the Time

Why is now the time for SECA? Recent technology breakthroughs have set the stage for low-cost solid-state fuel cells. These breakthroughs include:

- Advances in thin-film manufacturing of solid-state materials; for example, tape casting and multi-layer ceramic processing.
- Innovations in planar designs, such as anode-supported electrolytes.
- Compact fuel-processing technology, such as micro-channel reforming.
- Low-cost invertors.
- Advances from related industries; for example, semiconductor manufacturing.

Market forces make it the right time for SECA. Deregulation is opening the door for distributed generation technologies like fuel cells — domestically and internationally. There is a growing demand for more electric power in the transportation sector.

The environmental spotlight is extending small-scale applications. The superb environmental performance of fuel cells makes them a leading contender for market share of small-size systems.

Slide 11 Status of the Market — Stationary

I would like to touch on the status of markets for solid-state fuel cells. Other speakers will discuss markets in more detail.

In the stationary market, there is a movement from central station to distributed power. This is the mainframe-to-personal-computer analogy. Customers want individual control and reliability. Penetrating the distributed generation market beyond niche markets applications will require costs at or below \$400 per

kilowatt. We need breakthrough technologies to reduce costs to this level. Environmental concerns are driving distributed generations toward very clean systems such as fuel cells.

Slide 12 Status of the Market — Transportation

In the transportation market, solid-state fuel cells offer the potential of low cost systems that can operate using the existing fuel infrastructure. These fuel cells offer both very high efficiencies and low emissions. Auxiliary power units for long-distance trucks may be an early market applications for solid-state fuel cells.

Slide 13 Status of the Market — Military

In the military market, fuel logistics are critical. Fuels represents 70 percent of the weight of materials moved in a military logistical deployment. DOD needs high-efficiency power sources compatible with defense logistic fuels. Systems need to be quiet, rugged, and have low thermal signatures. Field power units may be one of the early market applications for fuel cells in the military. The navy's decisions to use electric drive on new ships increases the potential size of the market.

Slide 14 A Paradigm Shift

Predicting the future is an inexact art. There is a Chinese proverb that says: "He who lives by the crystal ball will die from eating broken glass." With that said, a book was published recently that gives a view of the future. It is called *The Long Boom, A Vision For the Coming Age of Prosperity*. The authors are Schwartz, Leyden, and Hyatt.

The book describes several scenarios that might take place in the first two decades of this century. One scenario is named after the title of the book — the Long Boom. It depicts an unprecedented period of continued economic growth and world peace. But it is very clean, high-tech economic growth. Three to four billion people in developing countries move to the middle class. They want very clean energy: clean cars, clean electricity. Distributed power generation takes off. It is the beginning of the hydrogen infrastructure. And fuel cells can play a major role in this scenario.

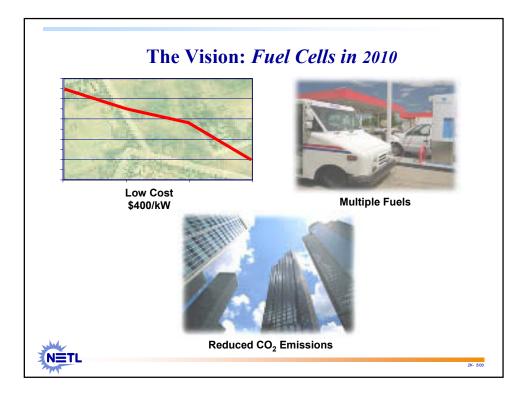
This is a scenario that many of us would love to see play out. But even in the less optimistic scenarios, fuel cells can begin to play a major role. I believe fuel cells represent a major shift in how we produce electricity and power and power. Using the buzz words, fuel cells represent a paradigm shift, or a disruptive technology that will change the market dramatically. SECA accelerates this paradigm shift. It starts with the end in mind. It capitalizes on industry's willingness to cooperate across traditional lines.

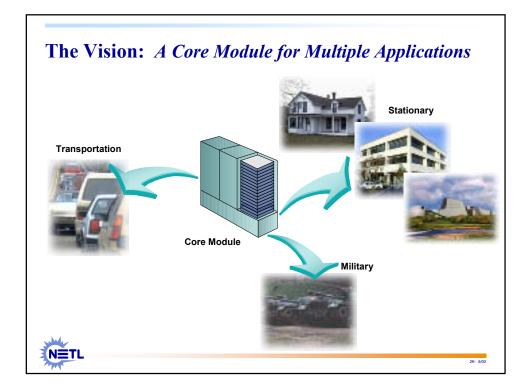
Slide 15 Public Benefits

As a result, the public benefits. When advanced, ultra-clean, fuel cells move from niche markets to widespread use:

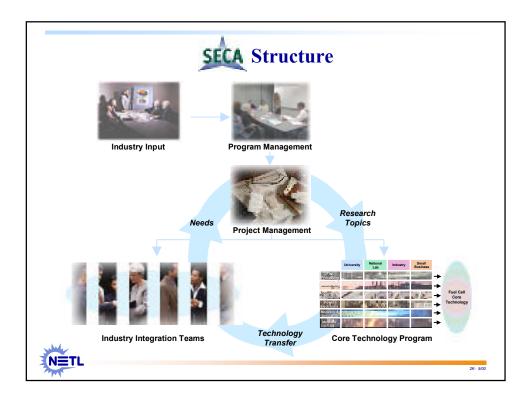
- Their high efficiency will result in significantly reduced emissions.
- Grid stability and reliability will be enhanced.
- We will have the option of continuing to use our low-cost domestic energy resources in an environmentally friendly way. We will be "greener sooner" using fossil fuels.

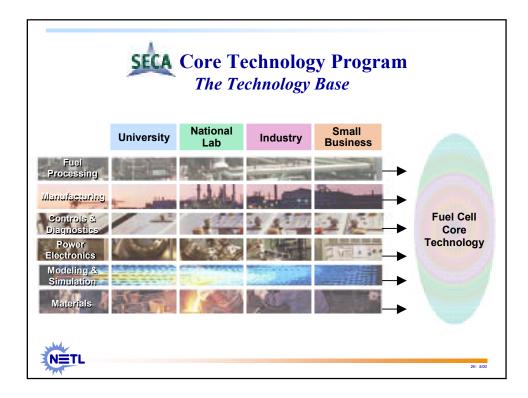
Slide 16 Responding to the Needs of the Nation

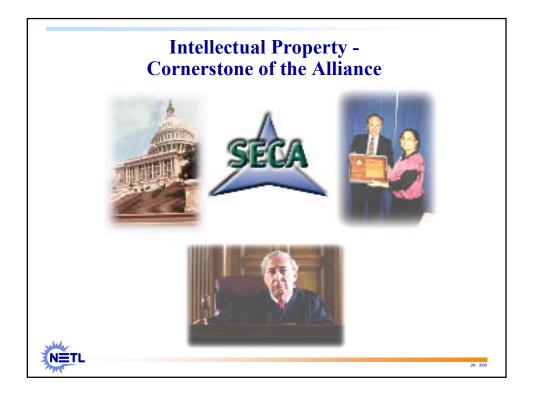

Assistant Secretary for Fossil Energy Bob Gee noted that "mass customization of fuel-cell components for stationary, mobile, and military applications can lead to mass manufacturing and in turn, to much lower unit costs."

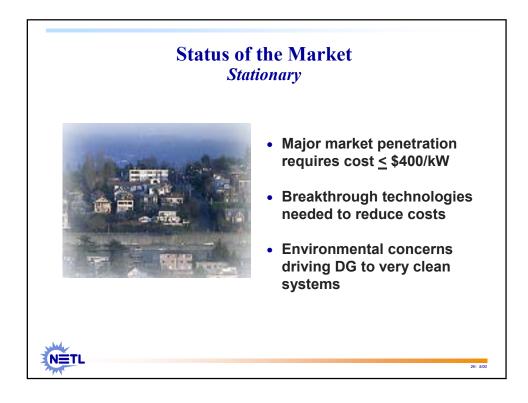

This approach, the SECA approach, helps the Department of Energy fulfill its mission "to foster a secure and reliable energy system that is environmentally and economically sustainable."

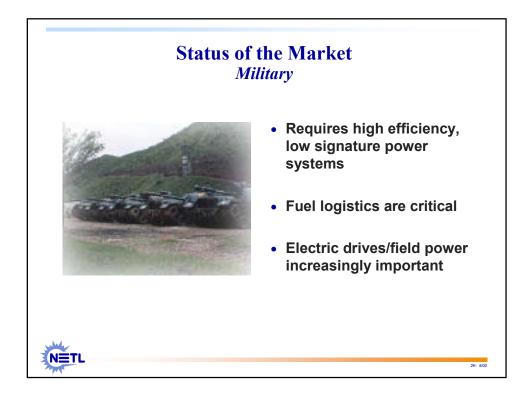
As a new business model, SECA provides "the break with traditional ways of thinking" that author Stephen Covey said is necessary to make significant technological breakthroughs. SECA responds to the needs of the nation by providing the means to commercialize clean, low-cost, solid-oxide fuel-cell technology.

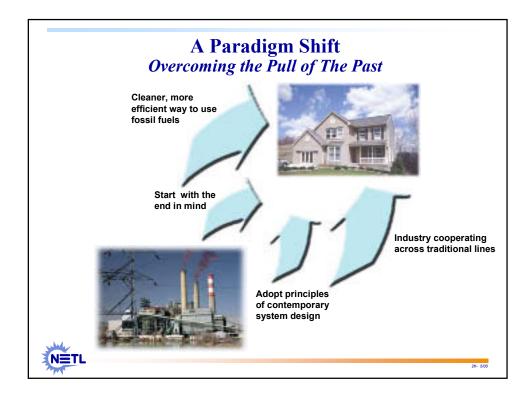

Thank you.

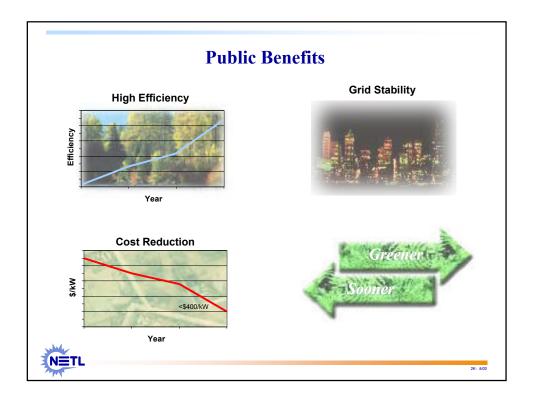


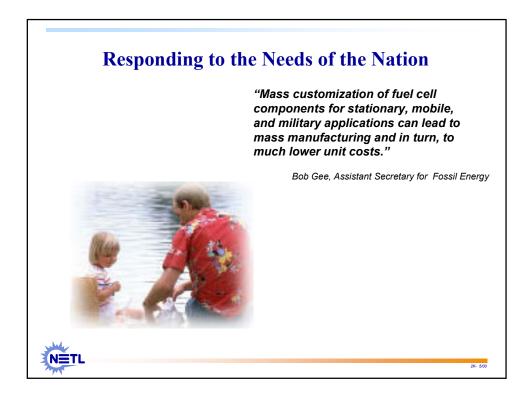


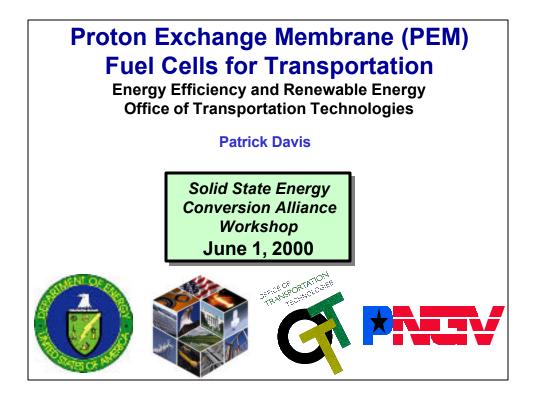


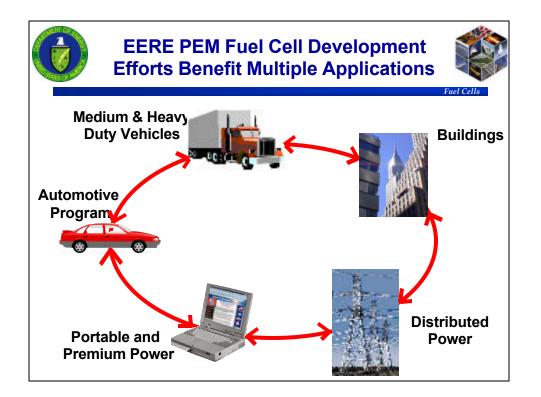


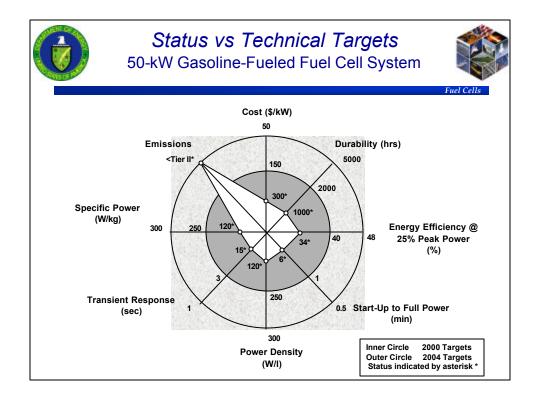


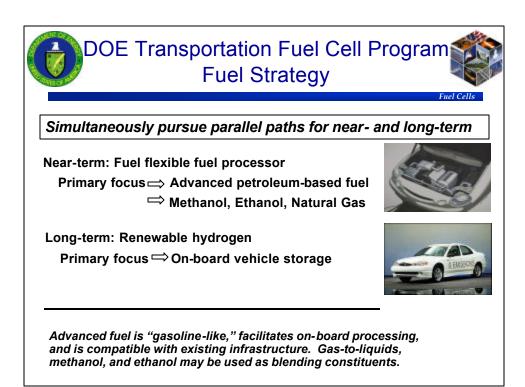


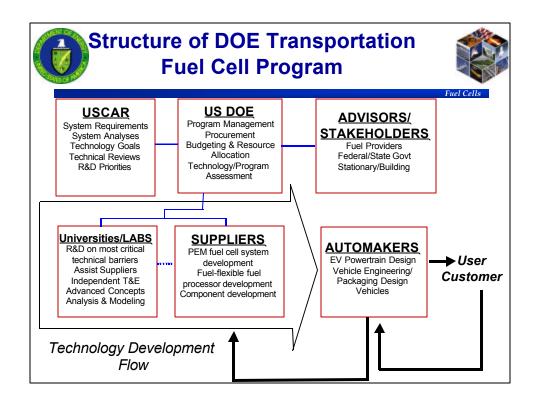


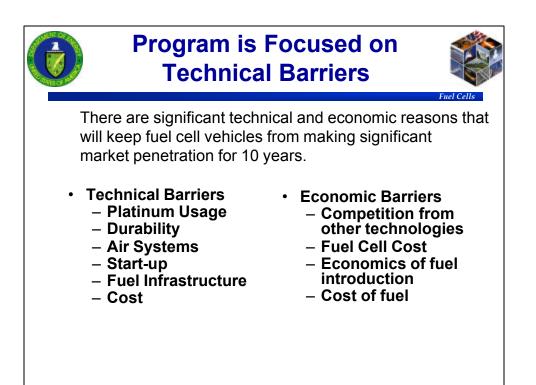




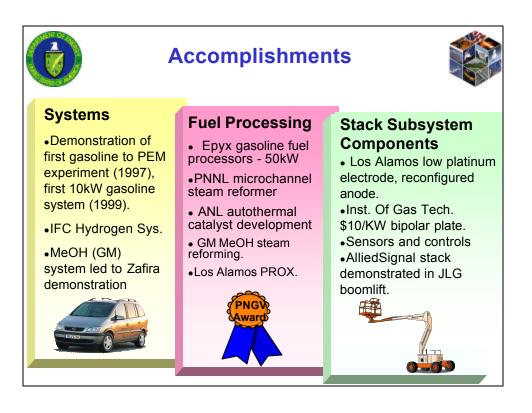

C. U.S. DOE, OFFICE OF TRANSPORTATION TECHNOLOGY, FUEL CELLS FOR TRANSPORTATION PROGRAM

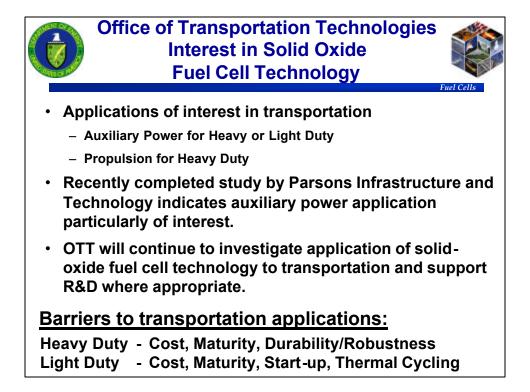

Patrick Davis, Program Manger U.S. DOE, Energy Efficiency & Renewable Energy

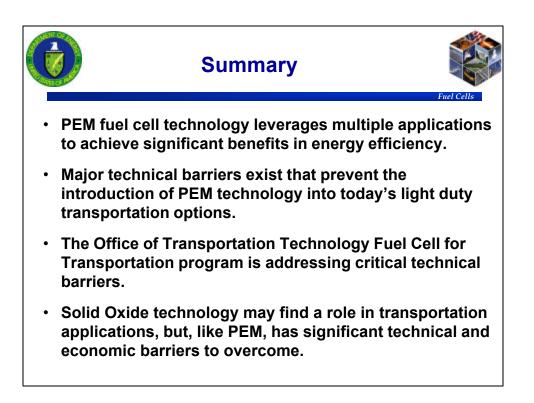




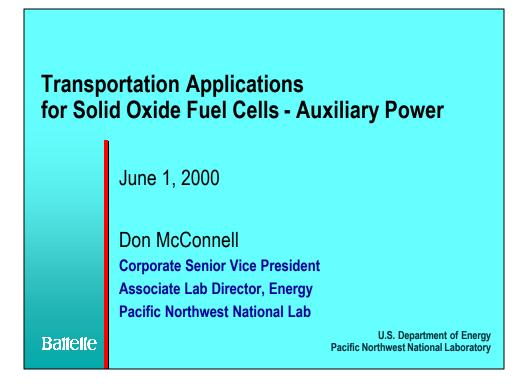
		Fuel Cell	
Projected Mileage, MPG			
	Gasoline Fueled_	Hydrogen Fuelec	
Urban Fuel Economy	79	101	
Highway Fuel Economy	97	128	
Combined	86	111	

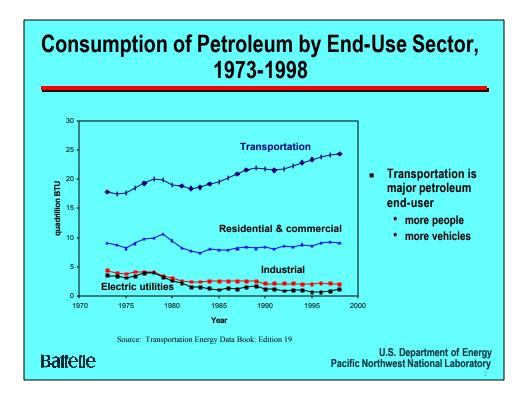


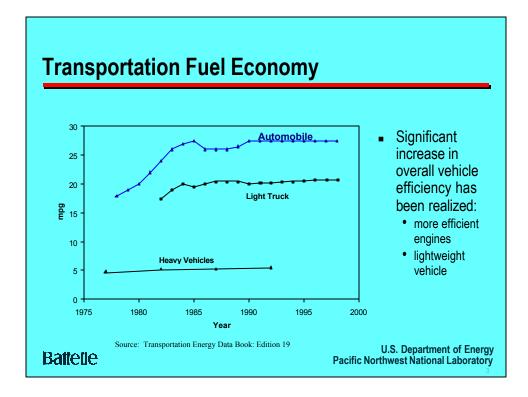


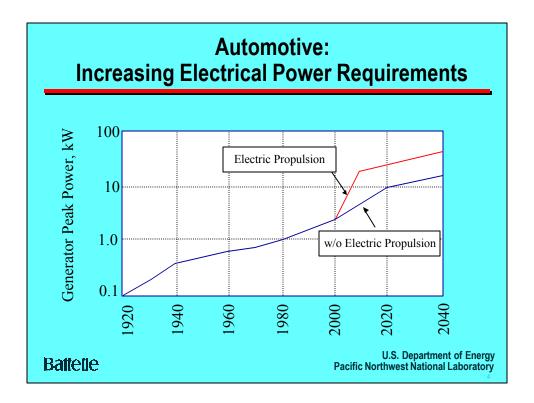


Projects and Funding by Budget Category								
Systems	Fuel Processing	Stack Subsystem						
 Plug Power/Epyx IFC Energy Partners, AlliedSignal ANL 	 NUVERA Hydrogen Burner McDermott Plug Power/UOP AlliedSignal Arcadis ANL, LANL, PNNL 	Components • Energy Partners, AlliedSignal, IFC, Plug Power • IGT, Electrochem • 3M, SwRI/Gore, Foster-Miller • Vairex, A.D. Little, AlliedSignal, Meruit • Spectracorp • LANL, LBNL						
FY00: \$6.0M	FY00: \$17.0M	FY00: \$14.0M						

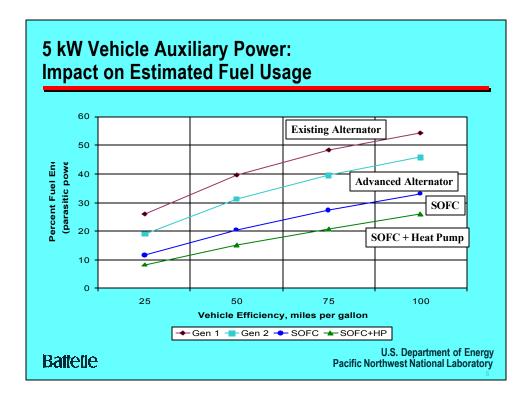


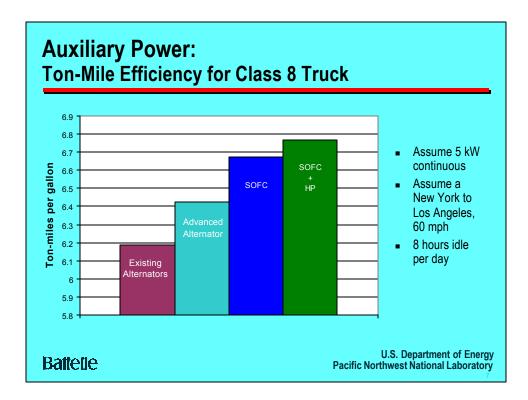


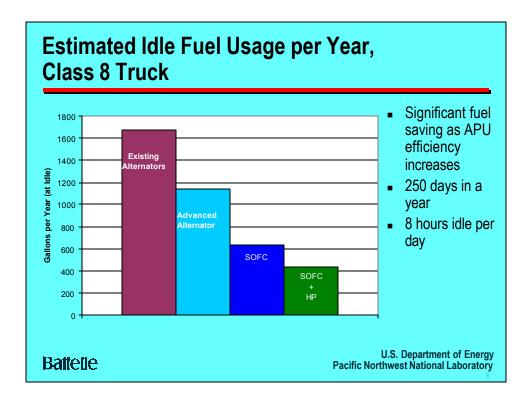


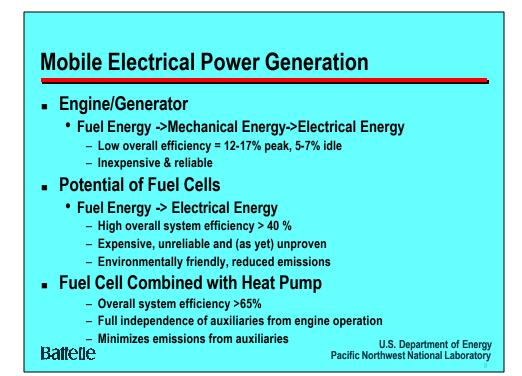

D. SECA: TRANSPORTATION APPLICATIONS

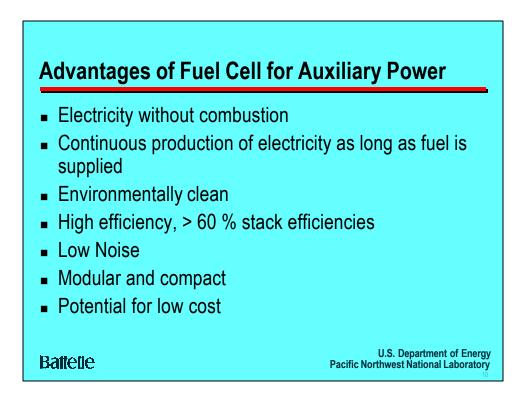
Donald P. McConnell, Associate Laboratory Director Pacific Northwest National Laboratory

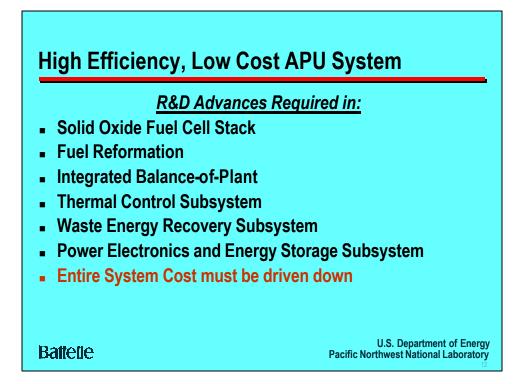


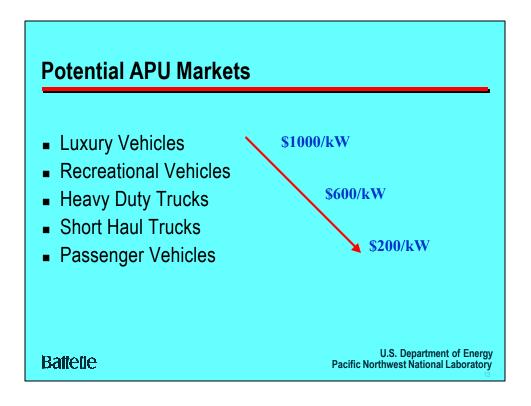




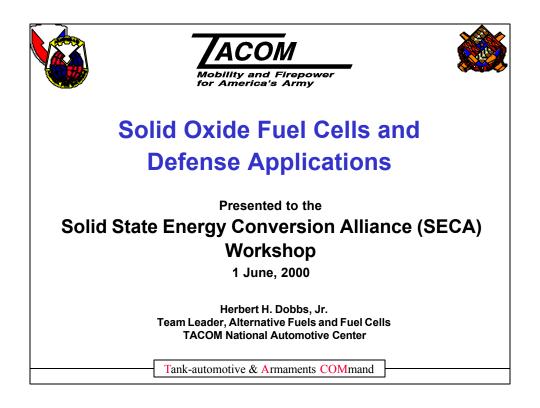



Peak Power Requirements	kW
Electric suspension	12.0
Heated windshield	2.5
Electric valve control	2.4
Electric power steering	1.3
Anti-lock brakes systems	0.67
Catalyst Heater	0.6
Diesel direct Injection	0.47
Electric coolant pump	0.3
Compartment Fan	0.3
Total Expanding Demand	20.5 kW

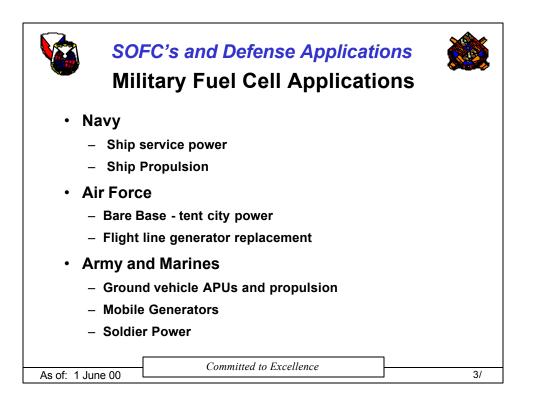

"Generic" Automotive APU Specification

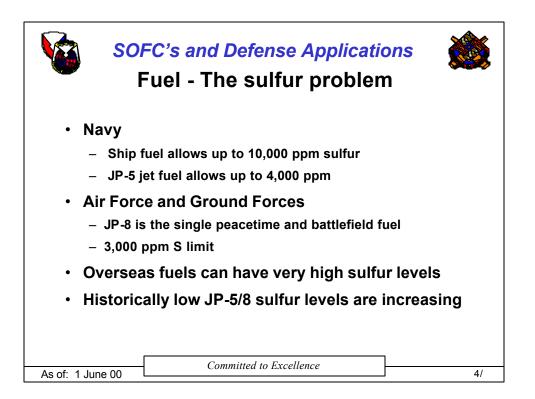

Power
Rated voltage
Mass Target
Volume Target
Operation life
Cold Start Required
Warm Starts Required
Maintenance Required
Efficiency
Surface Temperature

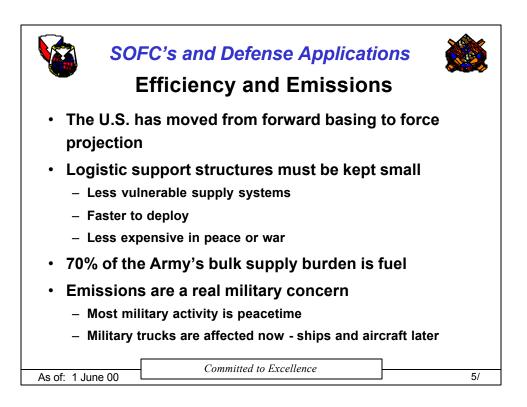
5 kW net 42 Vdc < 50 kg (0.1 kW/kg) < 50 liter (0.1kW/liter) >5000 hrs >3000 times SOFC < 10 minutes >> 1000 hrs (30 ppm S) > 40 % < 45 degrees celsius

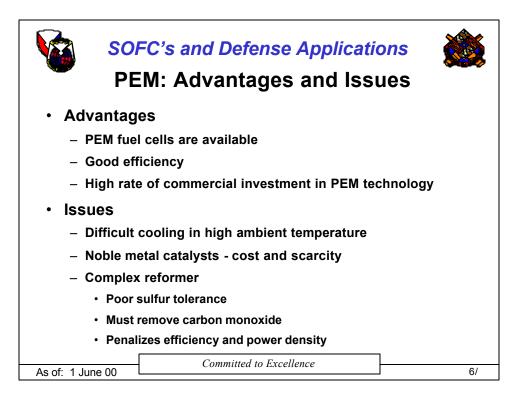

Battelle

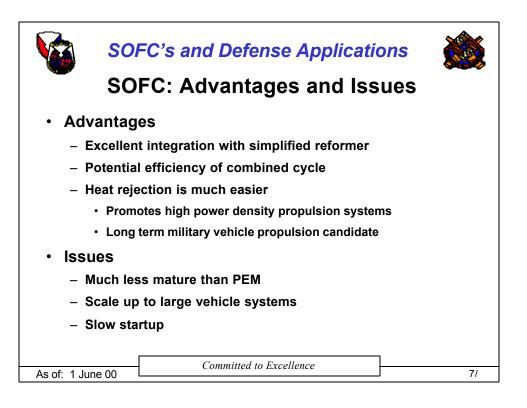

U.S. Department of Energy Pacific Northwest National Laboratory

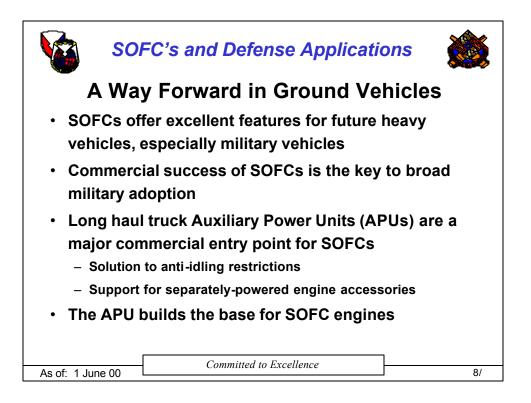


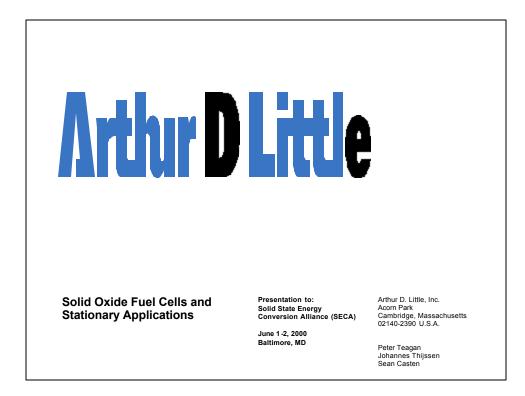


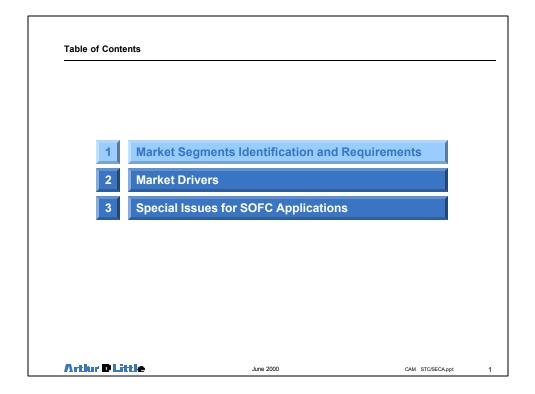

E. SOLID OXIDE FUEL CELLS AND DEPARTMENT OF DEFENSE APPLICATIONS Herbert Dobbs, National Automotive Center, TACOM



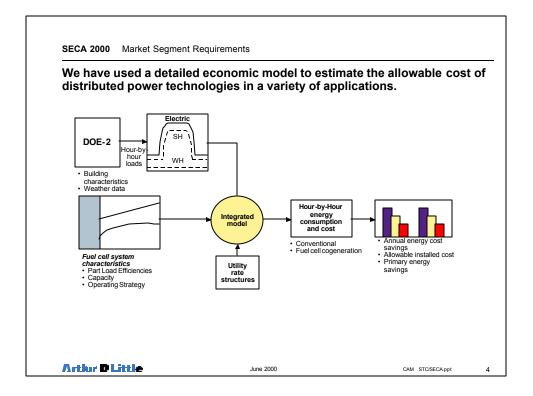


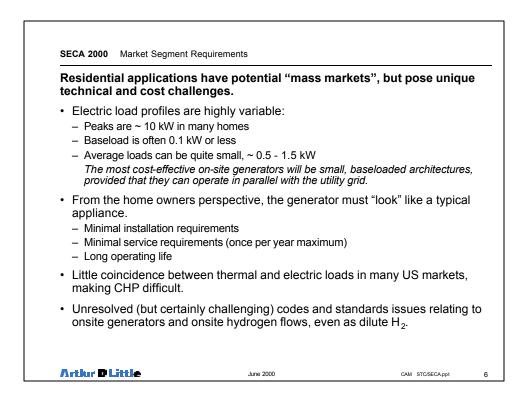


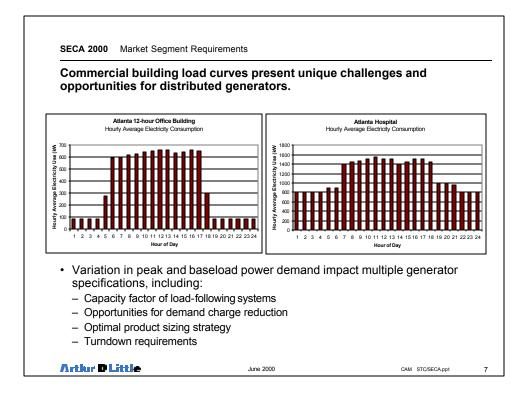


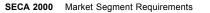


SOFC's and Defense Applications	
Herbert Dobbs, Jr.	
<i>Mailing Address:</i> U.S. Army TACOM National Automotive Center AMSTA-TR-N/272 (Dobbs) Warren, MI 48397-5000	
(810) 574-4228 (voice) (810) 574-4224 (fax)	
dobbsh@tacom.army.mil	
As of: 1 June 00	9/

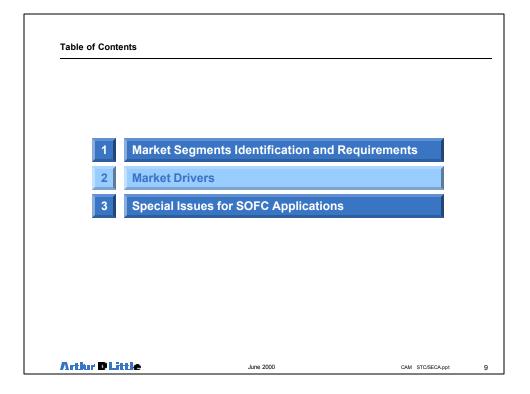

F. SOLID OXIDE FUEL CELLS AND STATIONARY APPLICATIONS W. Peter Teagan, Arthur D. Little, Inc.

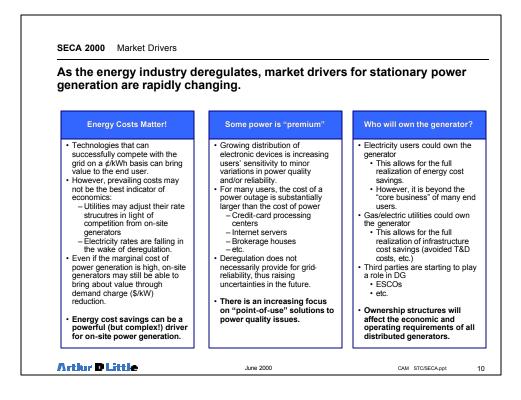


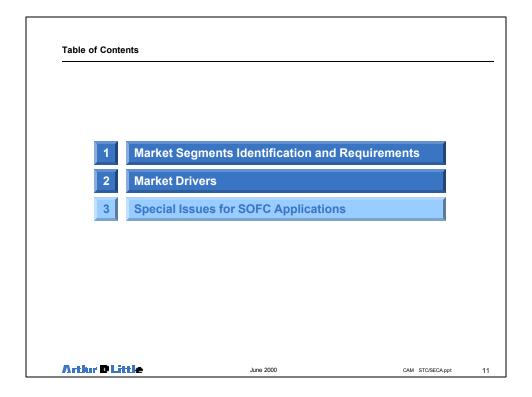

	t markets exist for stationary SOFC generators, each with teristics and requirements.
Residential	 Highly variable power requirements High competing price of power (¢/kWh basis) Highest requirements for reliability and ease-of-installation CHP is difficult
Commercial	 Peaky power requirements Baseload or peak-shaving applications are possible, depending upon rate structures. CHP potential exists in some applications. "Premium" power credit can increase the value of on-site generators.
Industrial	 Increased likelihood of dedicated loads High demand charges in some applications will favor peak-shaving systems. CHP potential exists in many applications. "Premium" power credit can increase the value of on-site generators.
Grid-support	 Can be installed to offset T&D and new generation capacity investments Implies that system is dispatchable by the local utility or ISO Most attractive for high efficiency systems, where the marginal cost of power is competitive with wholesale rates (1 - 4 ¢/kWh).

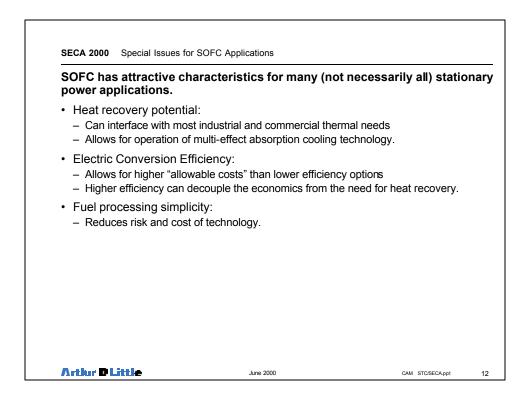

	nt.						
		Stationary Transportation					
	Build	Buildings Industrial Utility					
	Residential	Commercial	industrial	Distributed	Central	Automotive	Heavy Duty
1. Capacity (kW)	1 - 5	20 - 500	200 - 2000	500 - 5000	>100,000	30 - 90	60 - 2000
2. Efficiency % ¹	>35	>35	>40	>40	>55	>40	>40
3. Life (years)	>10	>10	>15	20	20	0.5 ³	2 - 10 ³
4. O&M (hours)	>4000	>1000	ongoing	ongoing	ongoing	>200	>200
5. Heat Recovery • Temperature Level	Important 80 - 220° F	Important 80 - 250° F	Important a. 120 - 300° F b. 80 - 220° F	Not Important N.A.	Not Important N.A.	Not Important N.A.	Not Important N.A.
6. Cyclability	Important	Important	Not Important	Important	Not Important	Very Important	Important
7. Emissions ² NOx (ppm)	<20	<20	~ 150	~ 50	~150	~ 50	~ 50
8. Startup Time	Important ⁴	Important ⁴	Important⁴	Not Important	Not Important	Very Important	Very Important

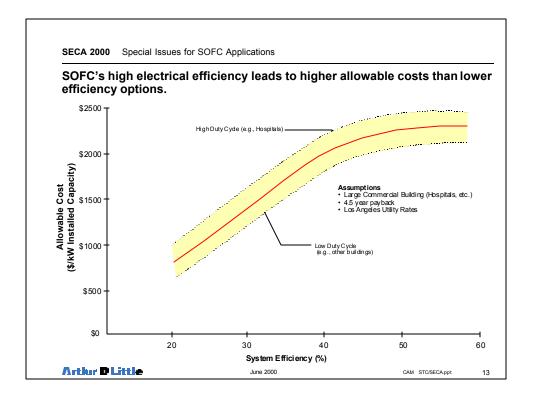
		Allowable Installed Cost ¹ (\$/kW)		
	Market Segment	Typical Capacity	Entry ²	Sustained ²
	Commercial Cogeneration	50 kW - 2 MW	\$1,500 - 2,000	\$800 - 1,300
On-site	Industrial Cogeneration	5 - 200 MW	\$1,000 - 1,200	\$800 - 1,000
	Residential Power	0.5 - 10 kW	\$1,000 - 2,500	\$800 - 1,000
ity	Distributed Power	5 - 20 MW	\$1,300 - 1,500	\$800 - 1,300
Utility	Central Station	100 - 500 MW	\$900 - 1,100	\$700 - 900

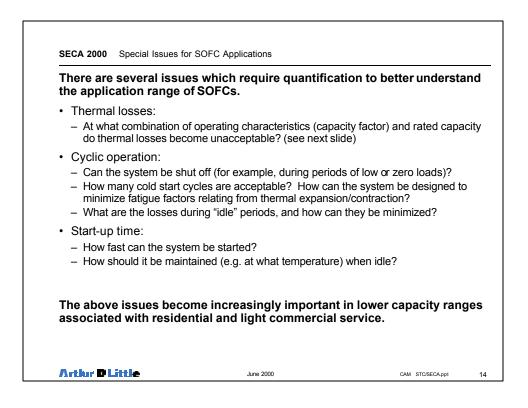


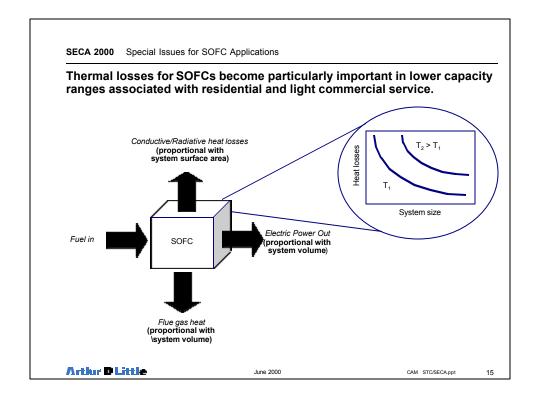


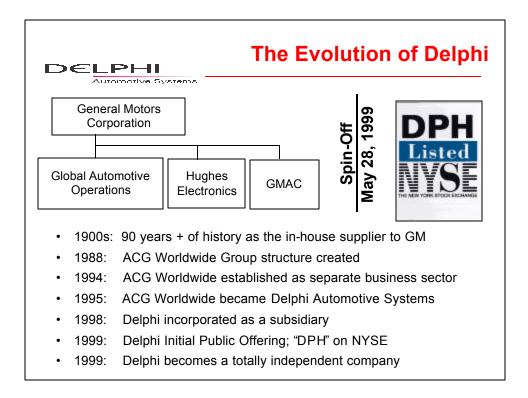

Significant markets exist for generators with rated capacities greater than 10 kW (e.g., non-residential units).

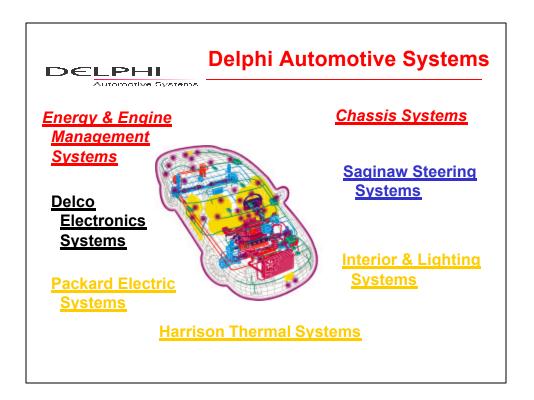

Building Type	Baseload Power Requirements (kW) [*]	% of US Commercial Electricity Use (kWh)
 Large High-Rise Office Largest Hospitals Largest Hotels Large Shopping Mall 	1,000+	20%
 Hospitals (200 - 300 beds) Large Hotels (750 rooms) Office (200,000 sq. ft.) School (125,000 sq. ft.) Large Retail 	200 - 1,000	35%
 Office (50,000 sq. ft.) Average Hotel (75,000 sq. ft., 125 rm) Multi-family (100 units) 	50 - 200	35%
 Fast Food Restaurant (4,000 sq. ft.) Small Office Building (10,000 sq. ft.) Multi-family (<25 units) 	10 - 50	10%
*Peak loads can be 2-3 times higher.		

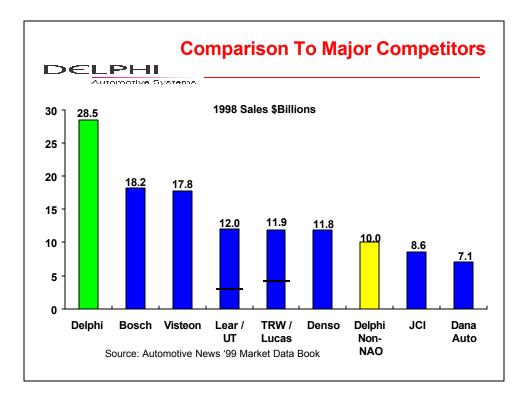

Arthur D Little June 2000 cr	AM STC/SECA.ppt	8
------------------------------	-----------------	---

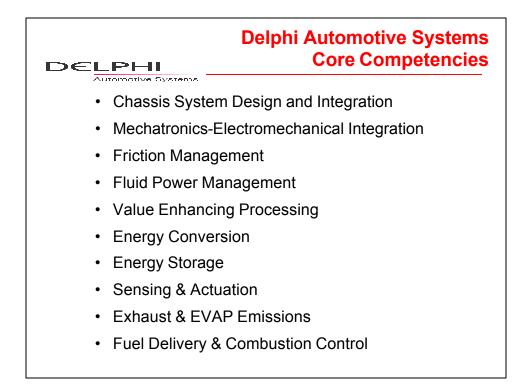


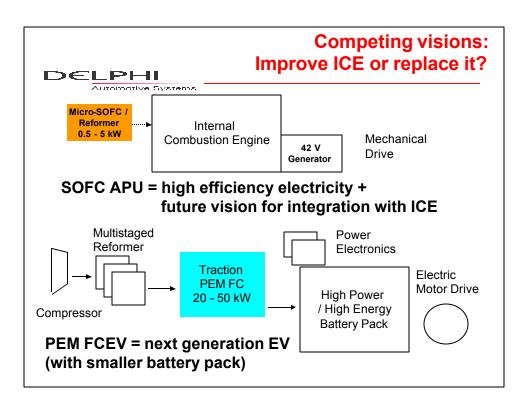


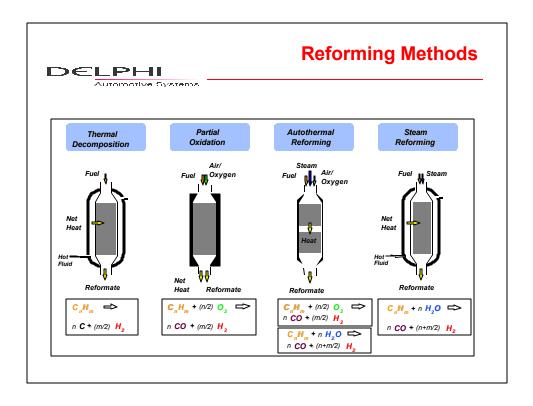


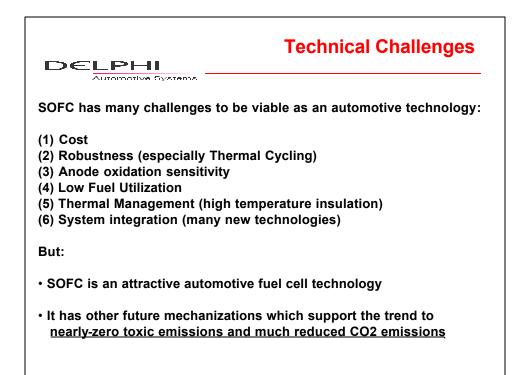

G. INDUSTRY PRESENTATIONS: FUEL CELL MARKETS

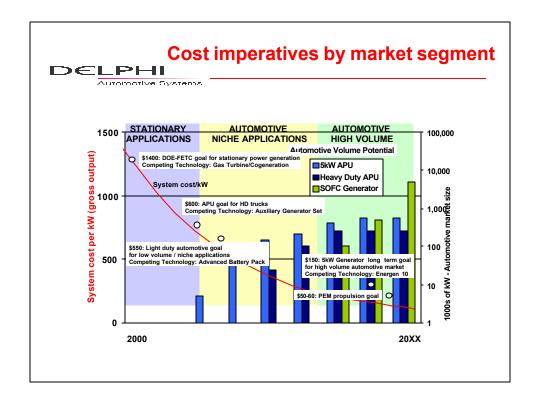

Carl Miller, Delphi Automotive Systems
 Nguyen Q. Minh, Honeywell
 William P. Schweizer, McDermott Technology, Inc.

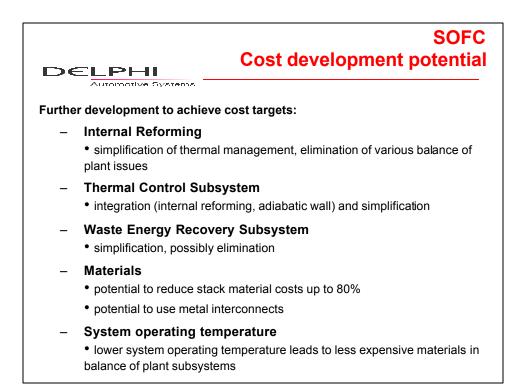


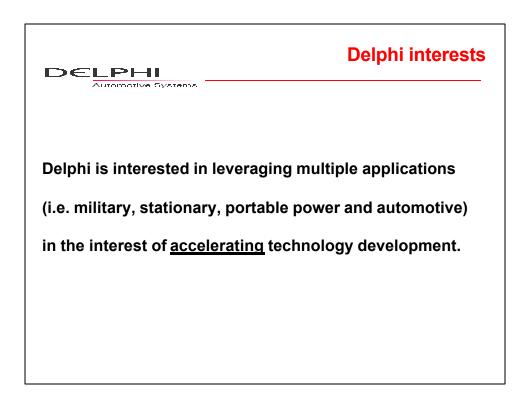


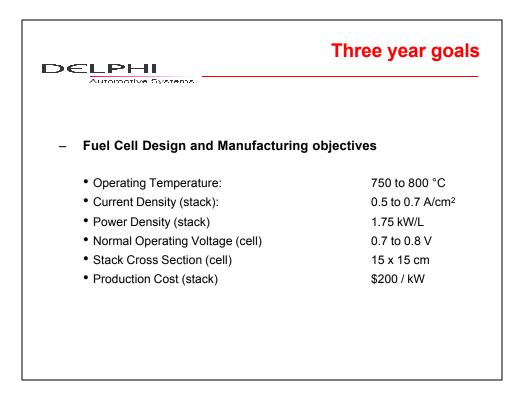


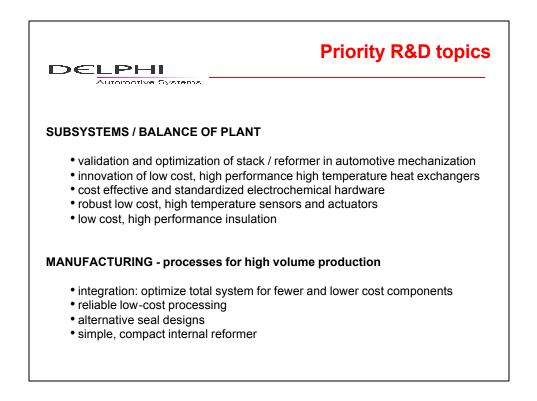


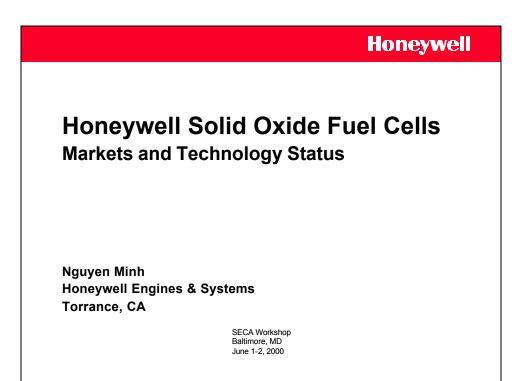


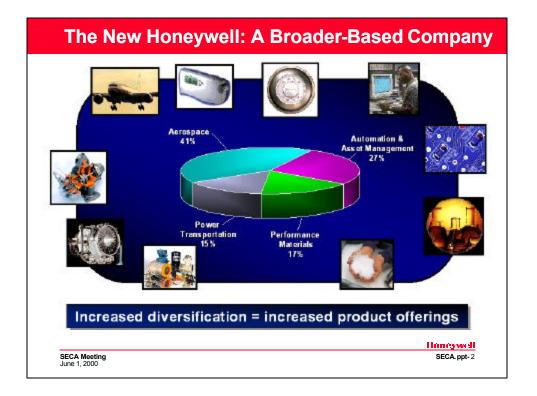


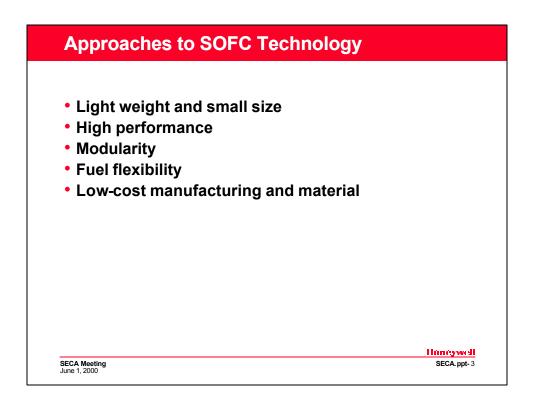


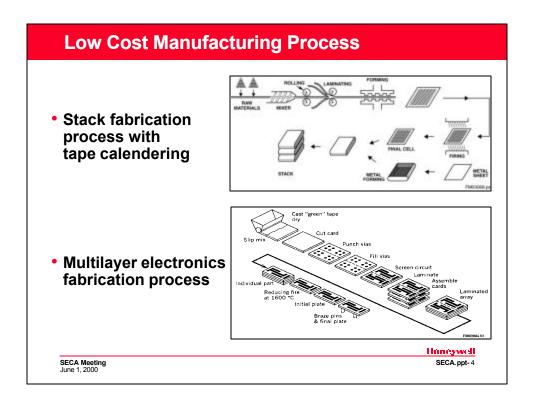


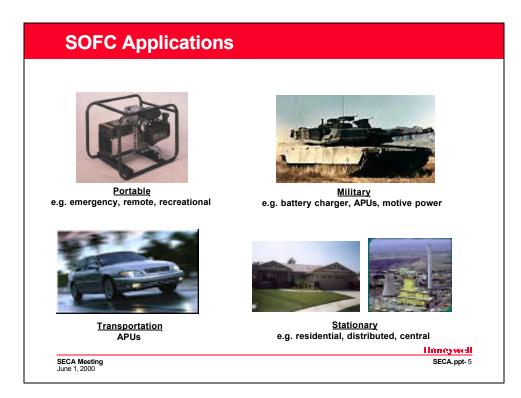


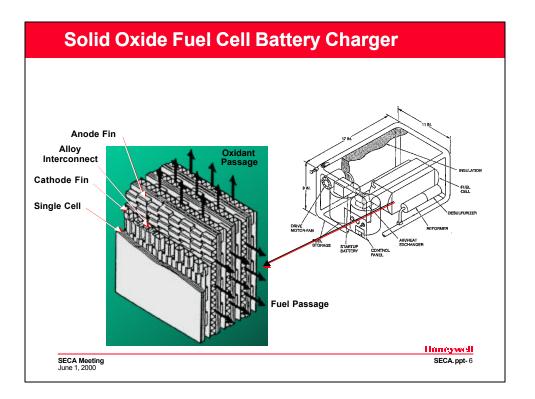




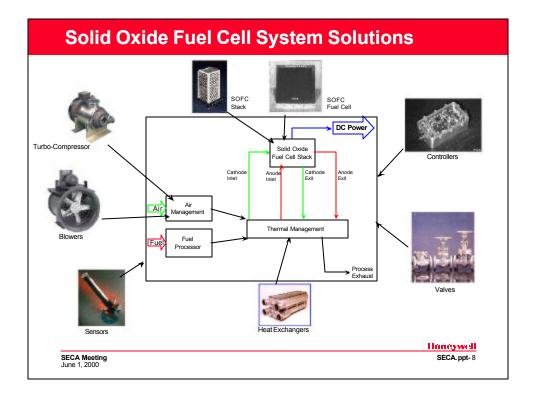


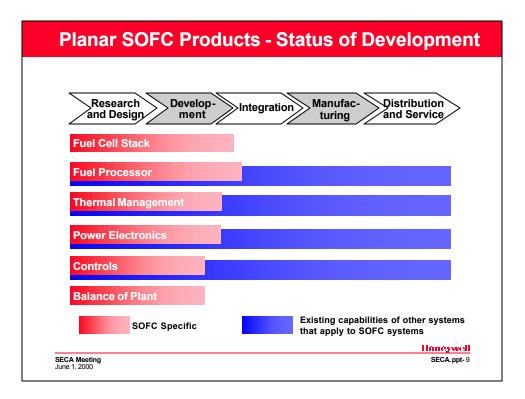


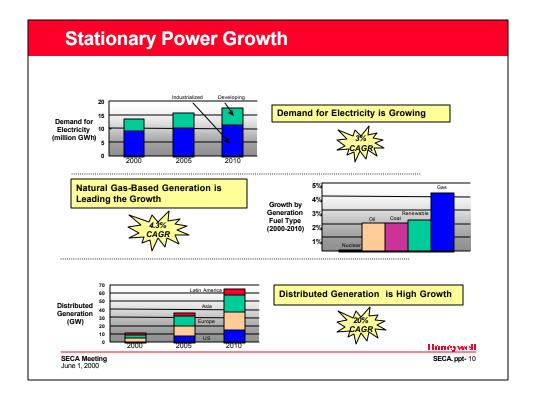


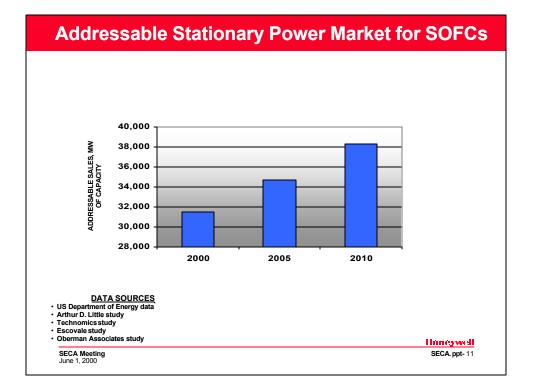


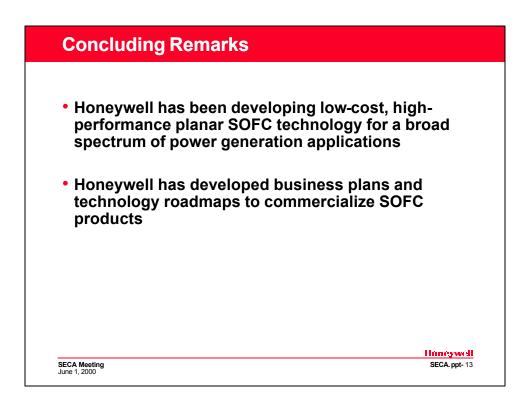


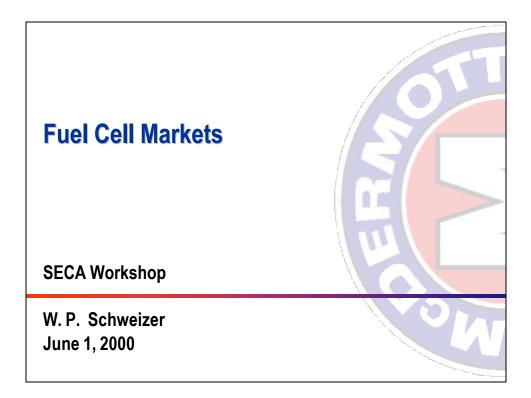


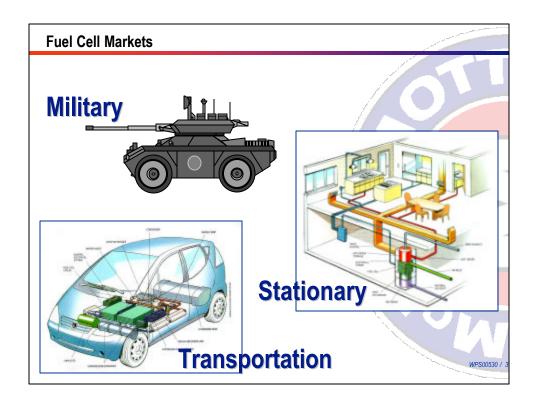


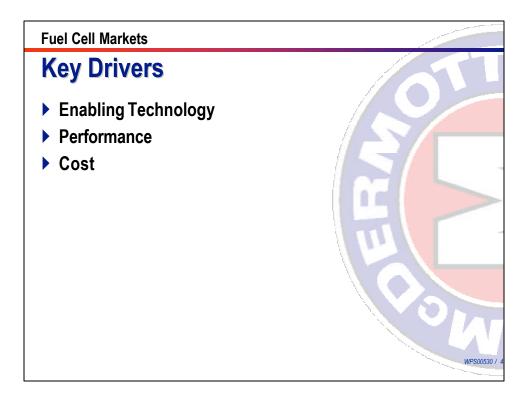


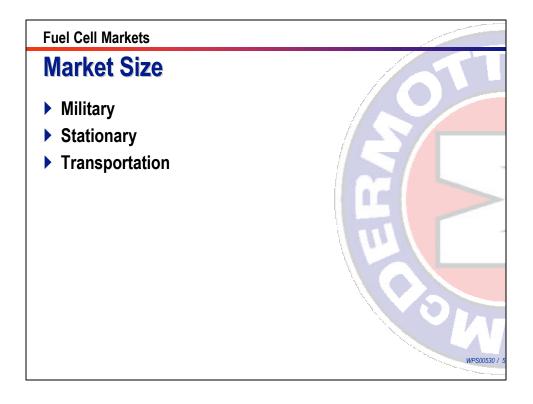


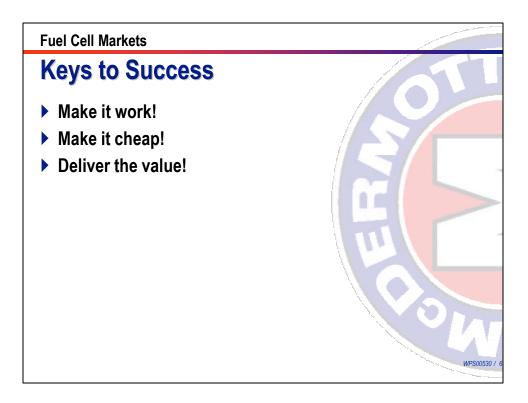


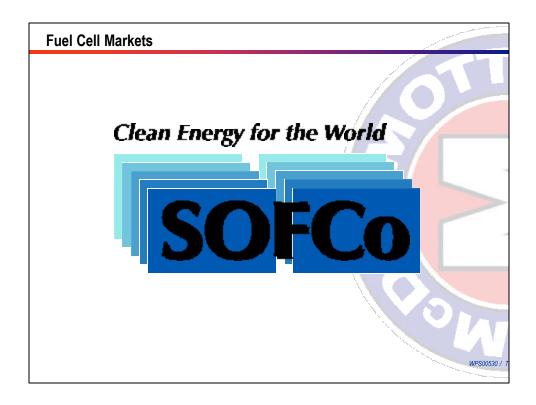


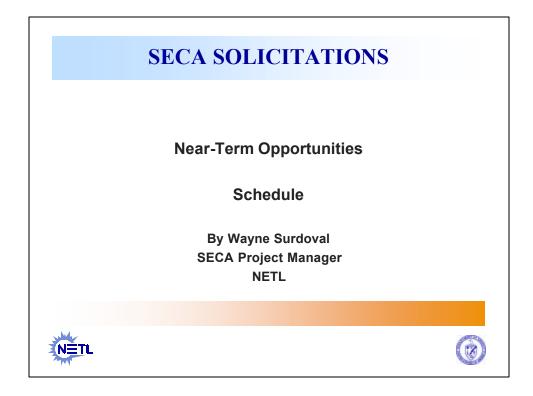


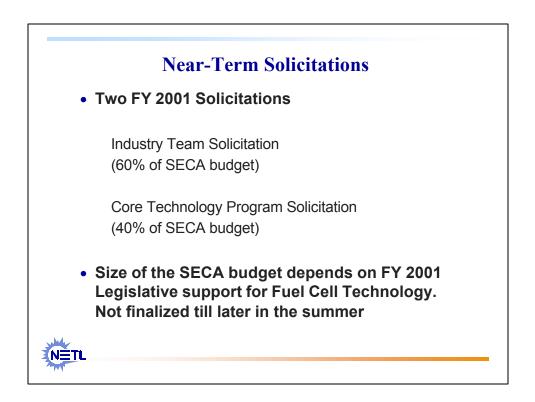

Potential Entry Market LOAD: 1 kW 10 kW 100 kW 1 MW 10 MW Heavy Industrial Light Industrial **Customers:** & Utilities Offices Transportation APU Strip Malls Schools Oil & Gas/Remote Hospital Residential First Planar SOFC Products Solutions: GAP Microturbines Gas Turbines Thermoelectric **Reciprocating Engines** Generator Honeywell SECA Meeting June 1, 2000 SECA. ppt- 12

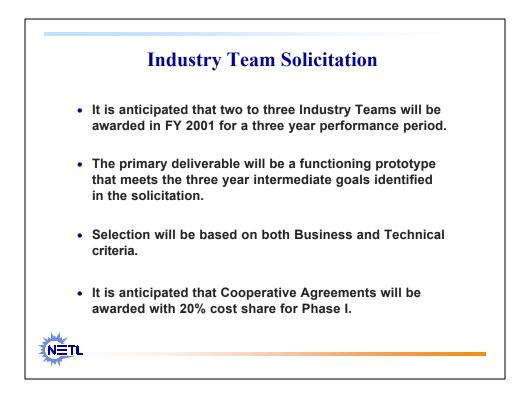


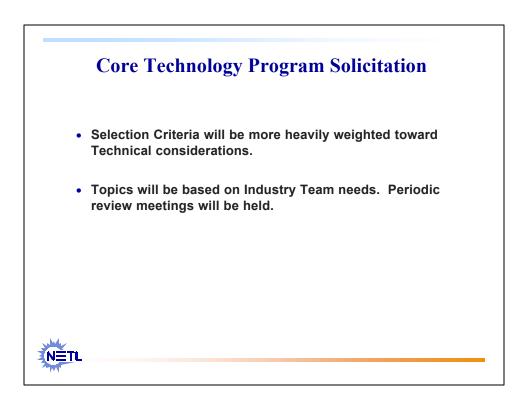




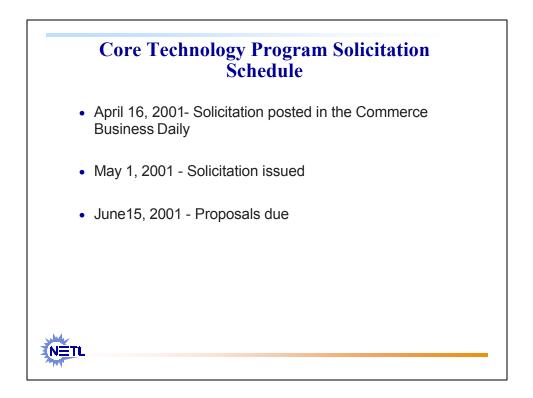







H. SECA: NEAR-TERM PROGRAM OPPORTUNITIES

Wayne A. Surdoval, SECA Project Manager U.S. DOE, National Energy Technology Laboratory



II. SECA: QUESTION AND ANSWER SESSION

Joe Strakey: Thanks, Wayne. I'm sure you all have some questions about the program and about what Wayne just talked about, as well as intellectual property and things of that nature. So I'll ask our panelists to come up, and we're going to take some questions from the floor.

Mark [Williams], Lisa [Jarr], Gary McVay, I'm going to ask all of you to use the microphone so that everybody can hear. If we don't get to your questions, just fill out a slip of paper and drop it off at the registration desk, and we'll get back to you with answers as best we can. [Note: None were submitted.] There are still things that are not 100 percent defined, so you may not get the firm answer that you might like. If we do get stumped, we can always turn to our other participants in the program who may be able to answer some of the questions that we can't.

With the remaining time, we'll try to take some questions for the people who spoke this morning. As I mentioned before, we cut off questions so that we could keep to the schedule. So with that, would someone like to start it off?

By the way, before you start, I should mention the following. You know Wayne [Surdoval]. Mark Williams is the Product Manager for our Fuel Cells Program at NETL. Gary McVay is from PNNL, where he manages Materials Programs, and he's our SECA contact for this program. Lisa Jarr is one of our attorneys. She specializes in the intellectual property area and she has had much to do with the development of the "exceptional circumstance" that will provide for limited non-exclusive licensing within the SECA pilot-program.

Sy Ali (Rolls-Royce): Mr. Rudins mentioned he would like to see \$400 per kilowatt by 2010. The speakers indicated values for central power under \$700 to \$800 per kilowatt without indicating the date. When do they expect to get to \$400 per kilowatt?

Wayne Surdoval: The program right now is structured such that the \$400 per kilowatt goal is a 2010 goal. It's pretty clear that we will have three phases. Phase 1 and phase 2 will have less aggressive cost goals. However, they will be aggressive enough that we can clearly get into a broad market even at these initial goals.

Joe Strakey: Keep in mind that we're trying to get to large central station plants using solid oxide technology in the 2015-and-beyond time frame for Vision 21 applications.

Lyman Frost (INEEL): Could you speak a little bit more to the sharing of the intellectual property and how that is going to work?

Lisa Jarr: The vision of SECA was that it would be critical to have the technology developed by the Core Technology Program available to all of the Industrial Integration Teams. Because we are a Government agency, we are restricted by law in taking certain rights from small businesses and nonprofits, such as universities, unless there is an exceptional circumstance under which we feel that we need to do

that. We feel that this program represents such an exceptional circumstance. So we are going forward to get permission to require the Core Technology Program developers to offer to the Industrial Integration Teams a non-exclusive license, under reasonable terms and conditions, for any patented technology that they develop. This option would be available for a period of time — probably a year after a patent is issued — and the Industrial Integration Teams could express an interest in whether they would like to engage in negotiations for such a non-exclusive license. The negotiations would be between the patent owner and the Industry Integration Teams.

Joe Strakey: Let me add to that. There's an important connection between the Industrial Integration Teams and the crosscutting developers of the Core Technology Program. That is the Industrial Integration Teams have something to gain from the technology that's developed by the Core Technology Program. They can get a non-exclusive license to the technology, which otherwise they may not have access to. With the exception circumstance in place, it will be an incentive for the Industrial Integration Teams to act as a guiding body to give the Alliance ideas, through DOE, of what research is important and relevant to the industry teams. We think that's a very important connection, and we're going to proceed with getting that in place.

Lisa Jarr: Right. And the benefit to the core technology developers is that they have a group of licensees for their technology where they can reap some benefit back to their programs. We think it's a win-win situation for all involved.

Wayne Surdoval: We plan to put a substantial amount of the budget into the Core Technology Program because, in return, it does help the alliance. In terms of this program; focusing this program; keeping it focused; if this relatively minor intellectual property change in fact is available, it will be critical to keeping the program focused. Otherwise, there wouldn't be much motivation for all of the partic ipants in the program to work together.

Momtaz Mansour (ThermoChem): On intellectual property, unless you provide reciprocity, so that patent holders of enabling patents also have the right to license stack technology, then you're going to have a lot of litigation on your hands. If there's reciprocity in the program, there will be cooperation. But if you're going to make it such that technology invented somewhere in a small business has to end up in the hands of a bigger company, it's not going to fly.

Lisa Jarr: We're talking about non-exclusive rights.

Momtaz Mansour (ThermoChem): There's no such thing. Once you non-exclusively license the technology, it's lost its value. The other issue is: 18 to 20 years ago, the question was reduction in cost of the stack and the material cost. I remember the number; it was \$285 per kilowatt at that time for a solid oxide fuel cell, and the target was \$400 to \$500. What is new that we know now that allows this target to be real? What is it? Why is this costing so much? Is it the mass production, the lack of market? What is the issue?

Gary McVay: For the first time, we've got the type of industry interested in and committed to making solid oxide fuel systems that has the low-cost production capability for it to become a reality. I mean, that's what these folks, the suppliers to the auto industries, do for a living. So that's one of the new things. And the other thing is that we have a market pull. We have a customer saying "if you can do, we'll buy

it." We've got an order in place for it. And technology has moved along. We haven't stood still since the time you were talking about, and so we have better approaches to things. I think it's a combination of technology advancements and getting high-volume, low-cost producers involved.

Mark Williams: I would like to emphasize that there's been a tremendous amount of progress in the fuel cell industry in the last 18 years, witnessed by numerous scale-ups and improvement in materials and components.

Wayne Surdoval: Some other factors too: One thing we're emphasizing is high power-density design. If you could increase the power density by a factor of two, you can substantially reduce your stack cost by that alone. We have had a number of studies done. If you look at the material cost at the higher volumes of projected production; the more simple manufacturing methods applicable to flat ceramic plates such as tape casting and screen printing; and if metallic interconnects are viable, the cost numbers do come out to \$400 per kilowatt as a reasonable goal. We have several studies that show this.

Dave Archer (Carnegie Mellon): I guess I wanted to make a special plea for those of us intended to respond to your multi-level fuel cell fabrication proposal. We had hoped to respond to that, and we're told that a new program that you've announced today would be available. But it seems a rather long time to wait from now, when we had hoped to make a proposal to your multi-level fuel cell proposal, to the time when core support proposals will be entertained, approximately a year from now, I guess. A year's vacancy is a concern.

Wayne Surdoval: Today we are only speaking about the SECA program. There are other programs throughout DOE. There will be many opportunities. There are SBIR opportunities. There are opportunities through AR&TD [Advanced Research and Technology Development]. We actually have a solicitation on the books — it's written, and ready to be issued shortly — that would be directed to the universities. There will be other opportunities. This is strictly SECA. The SECA program will be an industry-driven program, but there will be other work. We also need to keep other work going to achieve the longer-term breakthroughs that can help us down the road.

Joe Strakey: Let me add that in the Government, the budget cycle is at least 2 years, so making a change in program direction is difficult, and we felt that it was important not to get people started in one direction and then change it once the contracts were awarded. So, with this slight delay, we pay a price, but I think in the long run it will provide additional opportunities for developers in this area, and will avoid early terminations or anything like that.

Gerry Agnew (Rolls-Royce): I'd like to return to an earlier topic and raise a question: What happens to the background IPR [intellectual property rights] for the existing stack development technology people who participate in this? And related to that is the question: For somebody who has the option to be in a vertical integration team or who has stack technology developed in-house, if we go in as a vertical integrator, are we just paying for the development programs that other people were involved in when we have a stack program of our own? How are you going to handle the background IPR for the core developers?

Lisa Jarr: The DOE intellectual property provisions will apply to any of these awards. And for large businesses, there is a background patent licensing requirement. It's never been invoked, that I'm aware

of, by the Government — at least not by the Fossil Energy program — but it is a statutory requirement. The large businesses will be able to apply for a patent waiver for any inventions that they make under this program. But there is a limited background patent license requirement for purposes of practicing technology developed under the Government-funded program, which in this case would be, I guess, a financial assistance award under SECA. It's something that we really cannot get away from. But as I mentioned, it has not been invoked in any program that I'm aware of.

Gerry Agnew (Rolls-Royce): That would imply then that you don't feel you're building substantially on the existing IPR — the older IPR will be new IPR.

Lisa Jarr: Well, I think the idea is not for us to do fuel cell development, but to help you folks do it. The reason that we would invoke a background patent license would be if you've done work for us under this program and basically put it on the shelf, and we would have somebody that comes to us and say "We want to practice that technology that you paid to have developed," and we need to have a background patent license from Rolls-Royce or someone else. The intention is that you're going to be off practicing this technology in the marketplace and that we're not going to have to get to that point.

Joe Strakey: If there's a market need for a technology that's not being satisfied because somebody is sitting on the invention, that's hard to imagine that's going to happen. I've heard a story that it happened once in DOD, but . . .

Lisa Jarr: Did you have another part to your question?

Joe Strakey: I didn't quite follow the second part.

Gerry Agnew (Rolls-Royce): Yes, the question really is: Will the vertical integrator effectively end up licensing technology that was developed before this program began?

Joe Strakey: Licensing it to core program?

Gerry Agnew (Rolls-Royce): Implicitly.

Lisa Jarr: You're looking at the risk to your existing intellectual property — is that the idea?

Gerry Agnew (Rolls-Royce): Well, essentially, for Rolls-Royce, if we join as a vertical integrator, we're effectively going to be climbing on the back of Honeywell or other people's development programs, and yet we have our own. So, what is the incentive for us to do that? We're just helping those guys in some ways. That's the question in my mind.

Joe Strakey: There's some confusion on this. Your intellectual property rights are the vertical developers' and wouldn't pass on to anyone else. You'd be building on what you've done before.

Joe Strakey: You mean in the horizontal teams?

SECA Proceedings

Wayne Surdoval: Well you can certainly act as a n industrial integration team. I mean a single company can act as a vertical integrator if you can meet all the requirements that will be in the solicitation for a vertical team. I don't really see a conflict myself.

Joe Strakey: More concerned about being of the Core Technology Program?

Wayne Surdoval: Yes, a company can also be part of the Core Technology Program. But in that case, whatever the intellectual property requirements are, you've simply got to accept them. And, if you choose to do that, then you're part of the technology pool. I would fully expect that certain companies would develop intellectual property or technology in-house as part of an industrial team, as well as be interested in what's going on in the core program. The core program is more for breakthrough technology. I would not expect you to be part of the core program if you had a significant prior intellectual property position ready for licensing, and in order to work in the core technology program you had to divulge that. I would think you would keep that in the industry team. There's no reason why you couldn't. That's your choice.

Joe Strakey: Other questions? How are we doing on time here? Are there any quick questions for any of the speakers this morning? You have to come to the microphone.

Steve Visco (LBNL): I have a question. It's kind of an organizational question. It also ties into IP [intellectual property]. If you have these kind of integral, vertical teams, which are, say, self-contained, but they can license technology from these horizontal core technology teams, you've also got the issue of these horizontal teams working, I assume, with the various vertical teams. And there's always this problem of cross contamination. I mean, there's going to be some sensitivities, I would think. You've got a hot project going in a vertical team; you've got members from horizontal teams who are seeing everybody's technical problems and trying to solve them. How are you going to keep the barriers there? How's that done in terms of intellectual property and how these two teams work with one another on two sets of teams?

Wayne Surdoval: I think that's up to the participants. We recognize that cross contamination could exist. I think the national labs in particular deal with that all the time.

Joe Strakey: Let me add to that. I think that maybe there's some misperception. The idea is that the industry team would provide input to the Government. DOE would decide what topics should be pursued on the horizontal teams, and we would issue solicitations. So, it's not like the horizontal team members would be working daily with each one of several vertical developers. I think that probably solves it.

Steve Visco (LBNL): So you will have separation?

Wayne Surdoval: Yes. The core program will consist of very specific contracted pieces of work.

Joe Strakey: See, it goes through our project management. You've got industry input, which feeds through project management, and it keeps it separated that way. Okay, we got a couple more.

Lyman Frost (INEEL): Let me ask one more question, following up on what you've just said. Underneath Federal law, the national labs are not allowed to work exclusively with any particular company. They have to be able to go to any of a number of companies if they want that area of expertise. Are we going to be able to work exclusively with industrial companies to protect their technology base in this area?

Lisa Jarr: Maybe I don't follow completely the restriction on the national labs, but I think . . . you're talking about in the core development program now?

Lyman Frost (INEEL): Yes, in the core development team, if more than one company wants to work with you in a particular area of technology, you have to be willing to work with each one of those equally. So the question I have is: If we were working on one of the core teams, would we be able to work exclusively with an industrial team in a particular area of technology?

Wayne Surdoval: I think in the core program, assuming things go as planned, you would almost by definition be working for everybody.

Joe Strakey: For the public, yes.

Wayne Surdoval: Now, in the other sense, if you wanted to establish a CRADA with a specific company, within the rules of establishing a CRADA, that would also be acceptable.

Lisa Jarr: I think, in that case, you probably would be talking about working with one of the industry integration teams versus the core program. Then, whatever rules and restrictions fall from contracting or doing CRADAs with a certain company would apply. We anticipated . . . and we've had national labs as subcontractors or team members on these teams before . . . and we anticipate that that could happen under these industry integration teams also.

Gary McVay: Almost by definition, when you're working on a core team problem, you're working with all of the industries. They all are interested in the solution of that problem and will receive the output of that research.

Joe Strakey: Just like any national lab project now. I don't see any difference except for this one of intellectual property.

Joe Strakey: Last one before lunch.

Ismail Celik (WVU): I am from the University. I see one component missing from the SECA program. That's the education of the engineering students for supplying the demand for this mass production and maintenance and all these . . .10, 20, maybe 30 to 50 years. How do you envision supplying this demand without a program in curriculum development in solid oxide fuel cell technology or in general fuel cell technology?

Wayne Surdoval: We're working on that now. As I said, the SECA program certainly encompasses universities. And when you encompass universities, typically you are training grad students. At the same time, we have other solicitations available. There is one that is not on the street quite yet, but when you read it, it is specifically written to enhance educational opportunities and support graduate student training for solid oxide fuel cell work. Again, there are other funding avenues besides SECA. This is strictly SECA. This is a very short-term industry driven program.

Joe Strakey: I'm going to have to cut it off because were running late.

III. INTELLECTUAL PROPERTY FACT SHEET Exceptional Circumstances for Work Proposed Under the Solid State Energy Conversion Alliance (SECA) Pilot Program

An Exceptional Circumstance determination is required to implement a slightly modified intellectual property agreement (relative to the Department of Energy Acquisition Regulations (DEAR)) in contractual or financial assistance arrangements with members of the Solid State Energy Conversion Alliance (SECA) Core Technology Program (universities, National Laboratories and other research-oriented programs). This modification of the standard DEAR intellectual property agreement is critical to the SECA structure and the implementation of the program. SECA is regarded as a pilot-program demonstrating a new Department of Energy (DOE) business model. Without this modification this pilot-program could not be implemented in a significant way. A brief description of SECA and the modified intellectual property agreement is discussed in the following paragraphs. DOE does not intend to modify any existing practices with regard to background rights. The purpose of SECA is to focus significant resources on a well defined technology target that in DOE's judgment has broad applicability. DOE believes the Exceptional Circumstance will ensure that the individual research organizations that receive substantial resources from the SECA budget will benefit both the Alliance and themselves. If the Exceptional Circumstance were not implemented, the majority of funding available for research would most likely be funneled through the industrial concerns at their discretion as it has been in the past.

The statutory authority for the Exceptional Circumstance follows. The implementation of this Exceptional Circumstance determination will further the goals of 35 U.S.C. § 200, e.g., to promote collaboration between commercial concerns, and nonprofit organizations and small businesses. Exceptional circumstance determinations are authorized by 35 U.S.C. § 202(a) when the agency determines that restricting of the right to retain title to an invention resulting from federal sponsored research and development "will better promote the policy and objectives of this chapter." This Exceptional Circumstance determination will better promote the following policy and objective of the Congress as described in 35 U.S.C. § 200: to use the patent system to promote the utilization of inventions arising from federally supported research or development; to promote collaboration between commercial concerns and nonprofit organizations, including universities; to ensure that inventions made by nonprofit organizations and small business firms are used in a manner to promote free competition and enterprise; and to promote the commercialization and public availability of inventions made in the United States by United States industry and labor.

The DOE is exploring a new business model by implementing the SECA Pilot Program through the National Energy Technology Laboratory (NETL) in partnership with the Pacific Northwest National Laboratory to develop solid-oxide fuel cell technology for a broad range of applications. The major element of the pilot program is the development of highly efficient, cost-effective and mass-producible solid-oxide fuel cell systems. The SECA goal is to enable the implementation of the mass-customization approach developed by U.S. Industry to solid-oxide fuel cell technology. This program offers the prospect of improving the overall efficiency of power generation by a factor of two over traditional technologies and

with greatly reduced emissions. These solid-oxide fuel cell systems have also been identified as one of the key enabling technologies for achieving the efficiency goals in DOE's Vision 21 Program.

The SECA will be structured into Industrial Teams and a Core Technology Program (an applied research and development program consisting of universities, National Laboratories, and other research-oriented organizations). A NETL led project management team will maintain responsibility for both of these activities. The Industrial Teams will develop the fuel cell stack, system, and manufacturing capability and the packaging needed for different markets; the number of teams will depend on the level of commitments from sponsors. The Core Technology Program will be focused on finding solutions to the more difficult shared technical barriers in support of the Industrial Teams.

In brief, the proposed intellectual property agreement will require members of the SECA Core Technology Program to offer to each of the Industrial Teams the first option to enter into a non-exclusive license upon terms that are reasonable under the circumstances, including royalties, for subject inventions developed under the SECA program. The field of use of the license could be limited to solid-oxide fuel cell applications, although greater rights could be offered at the discretion of the invention owner. The offer must be held open for at least 2 years after the U.S. patent issues and the invention owner must agree to negotiate in good faith with any and all Industrial Teams that indicate a desire to obtain at least a nonexclusive license. Exclusive licensing may be considered if only one Industrial Team expresses an interest in licensing the invention. Partially exclusive licenses in a defined field of use may be granted to an Industrial Team, as long as doing so would not preclude any other Industrial Team that indicates a desire to license the invention from being granted at least a non-exclusive license for solid-oxide fuel cell applications. The Core Technology Program participant that owns or controls the invention must enter into good faith negotiations with the individual Industrial Team. If no agreement is reached after 6 months of negotiations, the Department of Energy may grant such a license itself if it determines that the invention owner has not negotiated in good faith. Any assignment of the invention must be made subject to this requirement.

The following discussion provides additional justification for the SECA pilot-program exceptional circumstance:

- By making the intellectual property available to the Industrial Teams on a non-exclusive basis, the value of an individual license may be less but the cumulative value may very well be greater. If the intellectual property is important, all Industry Teams will need to have it to remain competitive, the baseline of the technology will be raised.
- Making the intellectual property available to as many Industrial Teams as want it, would ensure that the individual technology pieces are incorporated into the best designs versus that of only the highest bidder (not necessarily the technology with the best chance for commercial deployment). This would benefit U.S. National interests.
- If Core Technology Program participants could exclusively license to anyone they chose, including outside of the SECA Industrial Teams, then it would be unlikely that Industrial Teams would be willing to collaboratively define the Core Technology Program objectives. Based on past fuel cell program experience, Industrial Teams in general would prefer to keep most development work in-house. This is not necessarily the best technical approach or best use of public funds since an individual company

would typically not possess a concentration of the best talent; redundant equipment and facilities would have to be purchased; and redundant research and development efforts would have to be performed. This would negate the SECA goal of leveraging the most difficult problems to accelerate commercialization of this nationally important technology.

A market for the intellectual property is being created. The Core Technology Program participants will have a ready set of potential licensees to which they can license their invention(s), and, if the Industrial Teams are successful in commercializing their fuel cell systems, reap income in the form of royalties or cash payment. Also, in many cases where difficult negotiations for exclusive arrangements can keep intellectual property unavailable for significant lengths of time, companies can find ways to bypass intellectual property held by others. There is less incentive for a company to circumvent another entity if a mechanism is in place to make the intellectual property readily and immediately available. Parallel negotiations for non-exclusive licenses and the time limits imposed by the Exceptional Circumstance should significantly shorten the time it takes to implement new intellectual property. In addition, once an agreement is reached with one Industrial Team, agreements with the other Teams should quickly follow if the intellectual property has general applicability.

Appendix A Breakout Session Results

I. MATERIALS AND MANUFACTURING – SESSION A GROUP SUMMARY

<u>Issues</u>

In order to achieve the SECA goals, the following technology issues received the largest number of votes:

- Metallic interconnects
- Optimize fabrication technology
- New stack designs
- Better materials for seals that are low cost and easy to fabricate into the stack
- Reducing stack operating temperatures to below 700 C to allow use of bare metallic interconnects

R&D Opportunities

The R&D opportunities were categorized into three header topics. The following are the header topics and the corresponding R&D opportunities that received a multiple number of votes:

Advanced Integrated Fabrication Technology

- Single-step SOFC fabrication technique
- Develop low-cost thin-film fabrication/ manufacturing techniques

Component Development

- Low temperature development 800 C
- Development and investigation of metal interconnect technology

New Stack Design

- New cheap stack design to minimize interconnects and seals
- New stack designs

<u>Actions</u>

The group's blend of industry, academia, government and national laboratory personnel produced several in-depth technical discussions from a theoretical point of view as well as a "real world perspective." These proved to be a very valuable exchange and dialogue for all the participants. Given the timing constraints, it was only possible to develop specific actions for the top three opportunities.

Low Temperature Component Development:

- Mechanistic studies of electrode kinetics
- Optimize performance of mixed conducting cathodes
- Develop a direct oxidizing anode

- Oxidation resistant anode
- Modify anode to control T due to internal reforming
- Investigation of commercially available alloys for metallic interconnects
- Cathode side surface treatments on commercially available metallic interconnect materials
- Investigation of developmental alloys for metallic interconnects

Investigate and Develop Metal Interconnect Technology:

- Interconnect designs that minimize material use
- Investigation of the interconnect and electrode interface
- Explore thermal spray technique
- Control and optimization of sintering of ceramic multi-layers

Advanced Fabrication Technologies:

- Manufacturing cost estimation studies
- Increase mechanical strength of electrode support (or SOFC stack)

In addition to identifying the engineering, development, and research actions, a table was prepared indicating a consensus on the amount of time required to resolve each identified action. In all cases but one, the amount of time required was in the three to six year timeframe. This agrees with the anticipated SECA schedule.

MATERIALS AND MANUFACTURING - SESSION A

PARTICIPANTS

NAME	AFFILIATION
Gerry Agnew	Rolls-Royce
Bill Barker	ITN Energy Systems, Inc.
Scott Barnett	Northwestern University
David Bauer	Ford Motor Co.
Donald Beal	Performance Ceramics Co.
Ray Benn	United Technologies Research Center
Brian Borglum	Siemens Westinghouse Power
Larry Chick	PNNL
Mike Cobb	Michael A. Cobb and Co.
Tom George	DOE/NETL
Diane Hooie	DOE/NETL
Roddie Judkins	Oak Ridge National Laboratory
Benson P. Lee	Technology Management, Inc.
Ron Loehman	Sandia National Labs
Bill Luecke	NIST - Ceramics Division
John A. Olenick	Advanced Refractory Technologies, Inc.
James Ralph	Argonne National Laboratory
Robert J. Remick	IGT/GRI
Bill Schweizer	McDermott/SOFC
Mohinder Seehra	West Virginia University
Scott Swartz	NexTech Materials
Anil Virkar	University of Utah
Steve Visco, Chairperson*	Lawrence Berkeley National Lab
Conghua Wang	University of Pennsylvania
FACILITATOR: Howard Lowitt	Energetics, Incorporated

* = Presenter for report-out

• Design interconnects alloy that forms a conducting scale	 Chromium-free metallic interconnect Cheap protective coatings for 	Manufacturing cost modelsDesign for manufacture	High temperature corrosion of metal interconnects and interfaces	 Search/test alloys for interconnects Investigate novel stack designs
 Improved BOP/system integration Integrate experiments and modeling 	 Develop viable electrolyte with 10x 	 Cell stack design Identify/quantify trade-offs between: 	 New stack designs Identify/develop alloys for 	 Stack modeling Methods for low cost, high speed
to minimize sintering and expansion stresses in co-fired	 higher 0⁻ conductivity than YSZ Develop lower temperature materials 	pore size dist/amount, gas flow, SOFC performance, and mechanical	interconnectsDevelop improved extrusion and	deposition of SOFC stack materialsDevelop new materials having
 ceramic layers Aqueous processing and fabrication SOFC metainly (when Socility) 	 Develop lower cost thin film manufacturing (no UHV) New anodes/cells that can use 	 Develop reliable seals and prove	molding technology for complex parts	increased ionic conductivity at reduced temperatures
 of SOFC materials (where feasible) Develop metallic interconnect supported design and fabrication 	 New anodes/cells that can use hydrocarbon fuels New, highly electro-active 	new designsNew electrode materialsDevelop cell materials capable of	 Identify and develop durable, high- temperature metal-based interconnects 	 Develop manufacturing technology which makes stack production cost low
Identification of new, high	electrodes and development of electrode-supported cells	high power density at 700°C and below	Custom formulation of metal interconnects	10 11
performance, lower cost materials.Develop new multiplayer fabrication	 Development of single-step firing of cells 	 Develop new stack designs to simplify manufacturing 	 New methods for high temperature, multi-material joining and sealing 	
capabilities for cofiringSearch/test new materials for seals	 Single step cell fabrication technology 		 Identify and develop seal material/design systems 	

Materials and Manufacturing – Session A: Opportunities Database

Materials and Manufacturing – Session A: Issues

(\bigcirc = Vote for Priority Topic)

 Given a good fuel cell? How does one verify – technical test issues Rapid cooldown technique thermal designs Activation potential Sulfur poisoning of anode Complicated thin film/coating technology New stack designs COCO Innovative stack design 	 Concurrent operation of metallic plates at operating temperature of ionic conducting ceramics Better materials for seals low cost, easy to fabricate into stack OCCO Durable scaling (stack design/bonding agent) OCC Development of thinner cell components to lower amount of material per cell Hydrogen as fuel, new anode Stack must survive rapid thermal cycling 	 Interconnect inventory High working temperature 800°C 700°C Bi-polar supported (metallic) SOFC for cost reduction Cathode performance Expensive cathode materials Synergistic impact of R&D on issues Greater, more available body of knowledge and data (knowledge transfer includes from other fields) Basic knowledge and data relating to interconnects Multiple materials currently require multiple fabrication steps/ process needed Low-cost manufacturing of tri-layer cells Too many manufacturing steps 	 Metallic interconnects Metalls do not like to live at temperatures where conducting ionic ceramics like to operate so SOFC operating temperature must drop below 700°C to allow use of bare metal OOOOOOO Lower temperature materials OO Materials with higher conductivities at lower temperatures Cells/stacks manufacturing process flexibility Need materials/sealing geometries that can survive extreme thermal stresses of transient operation/fast startup Quality consistency in the ability to mass manufacture ceramic cells OOOOOO Quality of materials and fabrication processes Refinement, in process technology for making cells Electrolyte (thin film) deposition and sintering 	 Complicated manufacturing procedures requiring multiple firings of ceramics SOFC materials are not computer components Optimize fabrication technology COCOCOCOCO Small scale (size) extrusion technology needed Development of multimaterial co-firing to lower manufacturing costs Low cost, efficient materials Ability of SOFCs to follow load Single SECA goals (identify intermediate niches) 	 Lack of anodes capable of high fuel conversion with minimal prereforming (maximized efficiency) Req. use of high cost, dissimilar material properties materials that cause integration challenges Long term chemical compatibility data
--	---	--	---	---	---

Materials and Manufacturing – Session A: R&D Opportunities

(**©** = Vote for Priority Topic)

Advanced Integrated Fabrication	COMPONENT DEVELOPMENT	NEW STACK DESIGN
TECHNOLOGY		
 Single step SOFC fabrication technique Occode Develop low-cost thin-film fabrication / manufacturing techniques Occode Integrated cell/stack design with fabrication process development 	 Low temperature development <800 OOOOOOOO Identify new, novel seals and separators for test and evaluation Development and investigation of metal interconnect technology OOOOOOOO 	 New stack design(s) New stack, cheap design to minimize inter-connects and seals Conduct trade-off studies, i.e., temperature/materials Modeling to enable new design development and cost Design economic simulation model of effect of new designs on manufacturing cost Investigate material vs. design function trade-offs Miniaturizations Expand knowledge base of SOFC reliability under arbitrary operating conditions

R&D OPPORTUNITY	Actions	Type of Action	0-3	3-6	6-10	Industry	ACADEMIA	NATIONAL Labs
Low Temperature Component	 Mechanistic studies of electrode kinetics 	R	Х				А	
DEVELOPMENT	 Optimize performance of mixed- conducting cathodes 	D	Х			Ι		Ν
	 Develop direct oxidizing anode 	R	Х	Х			А	
	Oxidation resistant anode	R	Х	Х			А	Ν
	 Modify anode to control T due to internal reforming 	D/E	Х	Х		Ι		Ν
	 Investigation of commercially available alloys 	D	Х				А	
	 Cathode side surface treatment on commercially available alloys 	D	Х	Х		Ι		Ν
	 Investigation of developmental alloys 	D	Х	Х		Ι	А	Ν
INVESTIGATE AND Develop Metal	 Interconnects designs that minimize material use 	E	Х	Х				Ν
Interconnect Technology	 Investigation of interconnect, electrode interface 	R	Х	Х			А	Ν
	Explore thermal spray techniques	D	Х	Х				N
	Control and optimization of sintering of ceramic multi-layers	R/D	Х	X		Ι		Ν
Advanced Fabrication Technologies	Manufacturing cost estimation studies	D/E	Х	Х		I		Ν
	 Increase mech. strength of electrode support (or SOFC stack) 	D/E	Х	Х	Х	Ι		Ν

Materials and Manufacturing – Session A: What Are the Actions Needed to Take Advantage of the Opportunities?

Key: E = Engineering

D = Development

R = Research

Materials and Manufacturing – Session A: Report-Out

TECHNICAL ISSUES	R&D OPPORTUNITIES	KEY OPPORTUNITIES	ACTIONS
 Metallic interconnects Optimize fabrication technology Lower temperature materials Durable seals New stack designs (current stack designs) 	 Component development Low temperature electrode development Develop and investigate metal interconnect technology New stack design Minimize interconnects and seals Trade-offs driving design of stacks Advanced integration fabrication technologies Single-step fabrication technique Low-cost thin-film techniques 	Low Temperature Component Development	 Mechanistic studies of electrode kinetics Optimize performance of mixed-conducting cathodes Develop direct oxidizing anode Oxidation resistant anode Modify anode to control T due to internal reforming Investigation of commercially available alloys Cathode side surface treatment on commercially available alloys Investigation of developmental alloys
		Metal Interconnect Technology Advanced Fabrication Technologies	 Interconnects designs that minimize material use Investigation of interconnect, electrode interface Explore thermal spray techniques Control and optimization of sintering of ceramic multi-layers Manufacturing cost estimation studies Increase mech. strength of electrode support (or SOFC stack)

II. MATERIALS AND MANUFACTURING – SESSION B GROUP SUMMARY

<u>Issues</u>

In order to achieve the SECA goals, the following technology issues received the largest number of votes:

- Fabrication of stacks from cells
- Thin-film manufacturing cost
- Interconnects metal or oxide

While the costs of raw materials is not a major concern now, availability of certain materials (e.g., LSM and YSZ) could be problem down the road if the market takes off.

<u>R&D Opportunities</u>

The R&D opportunities were categorized into five header topics. The following are the header topics and the corresponding R&D opportunities that received a multiple number of votes:

Design

• Develop novel, low-cost cell stack design concepts

Interconnects

• Develop new interconnect alloys from fundamental understanding of oxidation kinetics and oxide conductivity

Fabrication/Manufacturing

- Cost-effective fabrication of high-performance cell stacks including tri-layers, thin electrolyte, electrolyte coating, low temperature, and colloidal deposition
- NDE to enhance manufacturability

Materials Properties

- Develop internally reforming stacks (anode or manifold)
- Develop different anode material for different fuels

Interface

- Fundamental investigations into interfaces-microstructures and catalytic properties
- Investigate novel interlayer for adhesion and chemical protection

<u>Actions</u>

Key action steps were developed for the top three opportunities.

Develop cost-effective fabrication techniques for high performance fuel cell stacks:

- Conduct fundamental studies into why defects occur
- Investigate large scale thin film deposition
- Develop in-situ NDE methods for identifying defects
- Adapt existing ceramic technique for specific fuel cell designs
- Develop low cost interconnect and seals

Develop new interconnect alloys from fundamental understanding of oxidation kinetics and oxide conductivity:

- Examine interface and coatings inter-relations and stability
- Examine stability and electric transport at interface
- Conduct surface modification studies

Develop compact, reliable, low cost fuel cell design concepts:

- Immediately study design as function of performance parameters
- Define cost and performance specifications
- Create ability to evaluate thermal and chemical properties with in-situ diagnostic tools
- Determine effects of high power density on long-term performance
- Build in design review to ensure flexibility to respond to change
- Evaluate transport phenomena
- Evaluate feasibility of internal reforming under multi-fuel conditions

MATERIALS AND MANUFACTURING - SESSION B

PARTICIPANTS

NAME	AFFILIATION
Harlan Anderson	University of Missouri at Rolla
Tim Armstrong	Oak Ridge National Lab
Glen Benson	Aker Industries
Sandy Dapkunas	NIST
Bill Dawson	NexTech Materials
Lutgard C. DeJonghe*	UCB/LBNL
Richard Dye	DOE
Peter Faguy	MicroCoating Technologies
Robert Glass	LLNL
Jack (John) Hirschenhofer	Parsons
Kevin Huang	University of Texas at Austin
Kevin Krist	GRI
Meilin Liu	Georgia Tech
Scott Mao	University of Pittsburgh
James Marsh	Concurrent Technologies Corporation
Gary G. McVay	PNNL
Nguyen Minh	Honeywell
Udaya Rao	NETL
Carl Reiser	International Fuel Cells
Richard Rozance	Car Sound Exhaust Systems, Inc.
Chin Schilling	Iowa State University
Dinesh K. Shetty	Materials and Systems Research, Inc.
Subhash C. Singhal	PNNL
Jeff Stevenson, Chairperson	PNNL
Michael Thompson	PNNL
Wayne L. Worrell	University of Pennsylvania
FACILITATOR: Rich Scheer	Energetics, Incorporated

* = Presenter for report-out

Materials and Manufacturing – Session B: Scientific and Technology Issues

 $(\bigcirc =$ Vote for Priority Topic)

MANUFACTURABILITY	INTERCONNECT MATERIALS	COST OF RAW MATERIALS	PERFORMANCE	STACK SYSTEM DESIGN AND
				INTEGRATION
 For target power density no high volume, low-cost tri-layer fabrication technology exists OOOOO Need for system integration of stack components and automated manufacturing Lack of alternatives to the costly EVD process for depositing the electrolyte Basic understanding of how electrode/electrolyte reliability is affected by colloidal deposition parameters Fabrication of stacks from cells OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	 Lifetime of interconnect materials Interconnect metal or oxide? COCOCOCO Lack of inexpensive thermally reliable seals Metal interconnects needed above 650°C 	 Low demand for LSM, YSE materials Availability of high V, low-cost raw material Image: Comparison of the second secon	 η of 60 to 70% will require 0.85 V/C+; close to theoretical present is 0.7 V/C Slow electrode kinetics at low temperature Limited temperature range Catalysis limiting issues below 700°C Lack of NDE techniques to predict remaining life Specific power (W/cm²) Anode composition and structure to permit full <i>in situ</i> reforming Hydrocarbon tolerances and poisoning Design of novel interfaces with minimum resistance 	 Thermal management Low cost PEN with controlled morphology electrodes Need for inexpensive thermal insulation Fuel delivery to all cells in stack Serviceability of complex fuel stack Materials compatibility Settling too soon on tech design Gas manifolding on mass customization of core module Need to recycle address disposal/ recycling of materials from stack Thermal cycling of scaled-up reduced temperature planar stacks

Materials and Manufacturing - Session B: R&D Opportunities

(**©** = Vote for Priority Topic)

DESIGN	INTERCONNECTS	FABRICATION/	MATERIALS PROPERTIES	INTERFACE
		MANUFACTURING		
 Improve thermal cycle Develop measures to shorten start- up Develop novel, low-cost cell stack design concepts Compact with improved reliability Minimize/eliminate sealing issues 	 Compliant metallic interconnect Investigate novel thin-film coatings for metallic interconnects – low cost Develop a) low thermal expansion b) high conductivity material that can survive in both reducing and oxidizing environments Develop new interconnect alloys from fundamental understanding of oxidation kinetics and oxide conductivity 	 Cost-effective fabrication of high-performance cell stacks Trilayers Low-cost thin electrolyte processing technology Develop and scale up electrolyte coating process and thin film stack manufacturing Low temperature Study colloidal deposition parameters impact on reliability	 Lower operating temperatures Solve film adhesion problems Develop different anode material for different fuels OO Novel composites for anodes Develop internally reforming stacks (anode +/or manifold) OOOOOOO Study chemical reactions at all interfaces during the fabrication and operation of electrode-supported thin-film stack Conduct modeling of material reliability and life-time production NDE of lifetime prediction of stack components Examine long-term dimensional stability of flat plate 	 Transport across heterogeneous interfaces and electrode architecture performance Fundamental investigations into interfaces -microstructure and catalytic properties COOO Investigate novel interlayer for adhesion, chemical protection COOO

R&D OPPORTUNITY	BRIEF DESCRIPTION	Type of Action	KEY ACTION STEPS	LEAD ROLES	OTHER POINTS
	OF OPPORTUNITY				
Develop cost-effective fabrication techniques for high performance fuel cell stacks	 Multi-cell stack extrusion Long term-new ways to make ceramics Lack of volume is main reason costs of manufacturer is high Dramatic cost reductions are needed. Capital costs of equipment are high In situ firing? Core can participate in long term – trilayers and PENs One-step firing Defects are a problem for reliability Start with simple traditional techniques 	 R First 3 years use today's process Longer term other methods will be needed 	 Fundamental studies into why defects occur Investigate large scale thin film deposition – review existing work Develop in-situ NDE methods for identifying defects Adapt existing ceramic technique for specific fuel cell designs Develop low cost interconnect and seals 	 Industry Longer-term concepts – consortia –NL, U 	Do not use material at temperatures higher than you make it
Develop new interconnect alloys from fundamental understanding of oxidation kinetics and oxide conductivity	 Very difficult problem! Chromium-are there other materials? Compounds Oxides, etc. as coatings? Need scale that is good conductor Lowering temperature can help Coatings are possibility but have own problems 	Mostly R and some D	 Ongoing throughout program Examine interface and coatings inter-relations and stability Examine stability and electric transport at interface Conduct surface modification studies 	 National labs and universities Consortium with industrial input 	Watch over next 3-5 years
Develop compact, reliable low cost fuel cell stack design concepts	 Design new stacks "core" Making stacks small involves core design issues Thermal and mass flow in compact SOFC Modify existing stacks "Industry Group" Choice of fuel is key 	 Core D and R Industry E 	 Study design as function of performance parameters 1st year Define cost and performance specifications Create ability to evaluate thermal and chemical properties in situ diagnostic tools 	Industry lead in design	 Need to have ability to change and avoid "lacking in" to particular designs Focus as quickly as possible on limited number of designs

Materials and Manufacturing - Session B: Actions

Materials and Manufacturing - Session B: Actions (Continued)

R&D OPPORTUNITY	BRIEF DESCRIPTION OF OPPORTUNITY	TYPE OF ACTION	KEY ACTION STEPS	LEAD ROLES	OTHER POINTS
Develop compact, reliable low-cost fuel cell stack design concepts (<i>con't</i>)	•	•	 Determine effects of high power density on long term performance Build in design review to ensure flexibility to respond to change Evaluate transport phenomena overtransient long term condition Evaluate feasibility of internal reforming under multi-fuel conditions 	•	•

Key: E = Engineering

D = Development

R = Research

Materials and Manufacturing – Session B: Report Out

DESIGN AND MANUFACTURING	BREAKOUT SESSION OVERVIEW	MATERIALS	CLOSING REMARKS
 Design is developed by industry Design affects manufacturability Novel ideas should be explored Address transient operations/thermal cycling Near-term – refining tapecasting Long-term – "multi-cell extrusion" 	 Achieving cost goals is dominating factor Major materials issues More specific than manufacturing issues at this time 	 Nature of electrolyte and electrode did not emerge as major issue Low temperatures, different story (e.g., power densities) T(E); A/cm² Interconnects are a major area to address Membrane contacts Oxidation 	 Difficult balance – design do not "lock in" too soon but focus as soon as possible – Design reviews Mobile stationary fuels

III. FUEL PROCESSING – SESSION A GROUP SUMMARY

<u>Issues</u>

In order to achieve the SECA goals, the following technology issues received the largest number of votes:

- Catalysis reduction of the size of processing hardware for multi-fuel
- Operation with little or no water
- Gas contaminant removal or purification
- Very rapid transient response
- Reformer stability during transients
- Fully integrated fuel processor
- Ability to internally reform natural gas

Overall, what is needed is a fully integrated fuel processor with multi-fuel capability that is small and is sulfur tolerant. Also, the reformer must have operational stability during transients, start-up, and shut-down conditions. The critical challenge mentioned repeatedly is either sulfur cleanup or sulfur tolerance. Without resolving this issue, many candidate fuels and markets cannot be considered for solid-state fuel cell system applications.

<u>R&D Opportunities</u>

The R&D opportunities were categorized into five header topics. The following are the header topics and the corresponding R&D opportunities that received a multiple number of votes:

System Development and Demonstration

- System level reformer development
- Development of low-cost, accurate sensors
- Multi-path approach to demonstrate electrochemical reformer

Fuel Characterization

• None

Clean-Up Process

- Develop a liquid phase de-sulfurization system
- Sulfur removal gas phase H₂S, organic sulfides

Catalyst Development

- Reformer catalyst development
- Catalyst characterization performance, life, cost
- Combinatorial approaches to catalysts

Modeling

- System modeling to identify optimal strategies for integrating stack and reformer designs
- Transient control, dynamic temperature, and reaction rates in reformer catalysts

<u>Actions</u>

System Level Reformer Development:

- Develop commercial, integrated, reliable reformer
- Develop modular packages for a family of sizes and functions or parameters

Fuel Processor Catalyst Development:

- Determine and characterize catalyst durability vs. fuel and operating conditions
- Improve catalyst yield and efficiency
- Characterize catalysts for sulfur tolerance and fuel consumption
- Develop alternate catalysts via combinatorial approach
- Evaluate sulfur removal techniques in liquid and gas phase
- Define level of sulfur cleanup requirements by fuel
- Evaluate and investigate reaction chemistry
- Evaluate and demonstrate small integrated efficiency reformer
- Maintain data in catalyst database/reformer handbook
- Test method and standard procedures to benchmark designs vs. target requirements
- Evaluate close coupled in-stack reforming
- Evaluate POX and ATR conversion selectivity
- Optimize reformer
- Evaluate integrated system in a remote field location
- Demonstrate catalyst endurance characteristics

System Modeling to Integrate Stack and Reformer Designs:

- Evaluate close-coupled in-stack reforming
- Develop user friendly commercially supported modeling package for reaction kinetics through coupled reformer and stack

The group identified research, development, and engineering actions that would need to be completed within the next 0-5 years and within 5-10 years to achieve the SECA vision. Within the next 5 years much catalyst development and system development activities need to begin. Initially, databases on catalysts and reformers need to be complied and made available based on characterization and trade-off studies and evaluations. From 5-10 years, system optimization and demonstrations should be stressed.

FUEL PROCESSING - SESSION A

PARTICIPANTS

NAME	AFFILIATION
Dave Berry, Chairperson	DOE/NETL
Rich Carlin	Office of Naval Research
Ravi Chandran	MTCI
Herb Dobbs	U.S. Army TACOM
Chris Egan	U.S. Navy/NAVSEA
Lyman J. Frost*	INEEL
M. James Grieve	Delphi Automotive Systems
Douglas Gyorke	DOE/NETL
Brian James	Directed Technologies, Inc.
Jason Lewis	DOE/NETL
Joe Pierre	Siemens Westinghouse
R. Srinivasan	The Johns Hopkins University
Thomas I. Valdez	Jet Propulsion Laboratory
Jud Virden	PNNL
Dennis Witmer	University of Alaska Fairbanks
Joe Woerner	Analysis and Technology
Richard Woods	Hydrogen Burner Technology
John Yamanis	Honeywell, Morristown, NJ
FACILITATOR: Joe Badin	Energetics, Incorporated

* = Presenter for report-out

Fuel Processing – Session A What Are the Science and Technical Issues to Achieving Vision?

(\bigcirc = Vote for Priority Topic)

CATALYST ISSUES	FUEL ISSUES	GAS CLEAN-UP	OPERATIONAL ISSUES	Cost Issues	System Integration
 Catalyst availability for variety of fuels Lack of more predictive catalyst design tools Catalysis - Reduction of size of processing hardware for multi-fuel Catalyst life Coking problems Catalyst life Coking problems Sulfur-tolerance and direct electrochemical oxidation Stable catalyst (sulfur) Rapid start-up Partial Ox. Reformer Sulfur removal, sulfur tolerance to reformer catalyst 	 Operation with little or no water (gasoline, diesel) Small and efficient P.O. reformer for gasoline and diesel 90% conversion Direct diesel (multi-fuel) SOFC, Eliminate reformer Partial oxidation of liquid fuels with oxygen Feedstock flexible Logistic fuels – compact, fuel-flexible, rapid response 	 Active sulfur removal gas phase Desulfurization technology – needs to be high capacity, without need for hydrogen, compatible with metcaptions and thiophenes Gas contaminant removal (or) purification Que C Pure hydrogen stream Selective gas separation technologies: oxygen, hydrogen, CO, etc. 	 Load following fuel source 20 to 1 turndown sensors Requirement for very rapid transient response rapid transient resp. COO Reformer stability during transients (startup-shut down – ramp) Control sensor how do we know when the reformer is deteriorating? Freeze protection Cycling 	 Low-cost high temperature heat exchangers Materials of construction (high-temperature) Hydrogen embrittlement Catalyst cost O&M 	 Fully integrated fuel processor T, heat balance 0000 Size reduction issues – heat management issues Start-up requirements coldhot 00 Achieving 60-70% efficiency goal without bottom cycle and in volume/wt envelope is challenging Ability to internally reform (in stack) – Natural gas 000 Control system 0

Fuel Processing – Session A What Are the R&D Opportunities to Overcome the Issues? (© = Vote for Priority Topic)

System Development and Demonstration	FUEL CHARACTERIZATION	CLEAN-UP PROCESSES	CATALYST DEVELOPMENT	Modeling
 Develop low cost high temperature heat exchangers DOE work in high "R" insulations Development of low-cost, accurate sensors Modular control system concepts System -level reformer development System -level reformer development Secocococo Microchannel reformers for reduced size and integration Multi-path approach to demonstrate electro-chemical reformer Develop low-cost, fully integrated fuel processor module Operational characterization of "state-of-the-art" fuel processors (Team) 	 Define and characterize fuels Decide what fuel is best – reference fuels 	 Sulfur removal – gas phase H₂S, organic sulfides Long life regenerable sulfur sorbents – demonstrate Nanoporous ceramic membranes for gas purification Develop a liquid phase De-S system Mixed oxide conductors for fuel processing 	 Catalyst characterization – performance, life, cost Develop multi-fuel single catalyst Reformer catalyst development OCOCOCO Steam reforming POX reforming POX reforming ATR Regenerable catalyst, also with insitu gas cleanup Low temperature (400-600°C) catalysts for direct oxidation Combinational approaches to catalysts Catalyst R&D "Dry" reforming Sulfur tolerant Low cost Size reduction 	 Develop reaction kinetics modeling Different fuels Different water Coke formation System modeling to identify optimal strategies for integrating stack and reformer designs OOOO Modeling heat flows Chemical reaction modeling for POX Fundamentals of hydrocarbon reforming (in-situ,) Transient control dynamic temperature, temperature and reaction rates in reformer catalysts (chemical modeling) Oysee System modeling "optimizations" toward mass customization

Fuel Processing – Session A What Are the Actions to Take Advantage of the R&D Opportunities?

System-Level	System Modeling to	FUEL PROCESSOR CATALYST DEVELOPMENT	LEAD ROLE(S)
Reformer	INTEGRATE STACK AND		
DEVELOPMENT	R eformer D esigns		
 Develop a commercial, integrated, reliable reformer Modularity – packages/family of sizes and functions (parameters) 	 Evaluate close coupled in- stack reforming Develop user friendly modeling package for reaction kinetics through coupled reformer and stack Commercially supported platform Demonstrate and validate 	 Determine, characterize catalyst durability vs. fuel and operating conditions Database (0-5 years) Improve catalyst yield/efficiency life (Research) Characterize catalysts for: S tolerance Steam/C ratio (min) Fuel composition Develop alternate catalysts (combinatorial approach) Lower cot Non-noble metal -0-5 years: membranes? Benefits/tradeoffs Sulfur tolerance removal Evaluate S removal techniques in liquid and gas phase Disposable Regenerable Active Define level of S clean-up requirements (by fuel Evaluate: investigate reaction chemistry (Research, Development) Liquid fuels Steam Pox ATR Electro-chem Evaluate and demonstrate small integrated efficiency reformer (Engineering, Development) (Gaseous) Gaseous fuels Steam Pox ATR O-5 Years – Maintain data of catalyst database/ reformer handbook Test method and standard procedures to benchmark designs vs. target requirements Evaluate close coupled in-stack reforming 0-5 years - Evaluate determine P.Osooting, ATR conversion selectivity (temp range) diesel and gasoline JPx Trade-offs of reformer types by application (Engineering) 5-10 Years – Evaluate integrated system in remote field location Evaluate and demonstrate asmall, integrated, eff. reformer (Engineering) 5-10 Years – Demonstrate catalysts endurance characteristics	 Ultimately – industry Core tech – university and national labs

SCIENCE AND TECHNICAL ISSUES	R&D OPPORTUNITIES	ACTIONS
 Cost Issues Integration Fully integrated fuel processor Operational Reformer stability during transients (startup, shutdown, etc.) Gas Cleanup Gas contaminant cleanup (include S) Fuel Issues Min S/C ratios Catalyst Issues Develop for multi-fuel and size S-tolerance 	 Modeling Reaction kinetics Systems modeling Catalyst Development New catalysts and characterization of current S-tolerance Clean-Up Processes S-removal!! Other contaminants System Development Reformer integration with other components Fuel characterization 	 System Level Reformer Development Split – gaseous

Fuel Processing - Session A: Report-Out

IV. FUEL PROCESSING – SESSION B GROUP SUMMARY

<u>Issues</u>

In order to achieve the SECA goals, the following technology issues received the largest number of votes:

- Availability of low-cost, small-scale reformers to deal with diesel and logistic fuels
- Deactivation of catalyst
- Internal reforming thermal management and poisoning
- Performance with respect to durability, life, and load following.

R&D Opportunities & Actions

The R&D opportunities were categorized into five header topics. However, the group did not vote on specific opportunities, but instead they voted on the header topics. Therefore, the following are the three header topics that received the most votes with only the first three bullet details presented.

Making Diesel Fuel Processor Work

- Make poison resistant partial oxidation reactor
- Demonstrate a two-stage diesel steam reformer
- Develop liquid fuel processors to remove sulfur

Propane/Natural Gas Fuel Processor as Cheap as Possible

- Develop low-cost, high-efficiency gaseous fuel reformer
- Develop a very inexpensive oxidative reforming unit
- Design for low cost manufacturing

Internal Reforming

- Design and build models for internal reforming stack
- Develop graded anode
- Develop oxidative internal reforming process for natural gas and propane

<u>Actions</u>

The group developed actions from the top three categories of R&D opportunities.

Develop a Compact Fuel Processor for Diesel and Logistics Fuels:

• Novel fuel conversion processes, e.g., advanced oxygen sources for partial oxidation and microchannels to enhance heat transfer

- Fuel pre-processing systems to remove troublesome impurities before they are charged to the fuel processor
- Anode catalysts that are resistant to sulfur and carbon
- Advanced balance of plant systems

These activities were categorized as spanning research and development.

Make Light Fuels Processors (Natural Gas, Propane, and Gasoline) as Low Cost and Compact as Possible :

- Thermal integration
- Miniaturization of equipment for 5 kW
- Start by simplifying fuel processors designed for PEM
- Multi-fuel R&D
- Integrated fabrication development
- Lowering components costs through DFMA and other means

These activities were categorized as primarily engineering.

Develop Internal (On-Anode) Reforming Technology:

- Steam reforming and POX
- Lab tests of internal reforming systems and use the data acquired to develop electrochemical and thermodynamic models of processes and obtain fundamental knowledge of them
- Multi-fuel tolerant core module
- Graded anode technology
- Advanced fuel-mixing concepts to facilitate heat transfer and management

Internal reforming was described as the "holy grail" of fuel processing, and activities supporting it are staunchly in the research end of the action spectrum.

FUEL PROCESSING - SESSION B

PARTICIPANTS

NAME	AFFILIATION
Buddy Hartberger	U.S. Coast Guard
Zohair Ismail	U.S. Army CEOM
Craig Linne	Visteon Automotive
M. Mundschau	Eltron Research
M. Mansour	ThermoChem
Kirby Meacham	Michael A. Cobbs & Co.
Larry Osgood	Consulting Solutions/Propane Council
Prabhakar Singh	Pacific Northwest National Laboratory
Jack Solomon*	Praxair Inc.
Walter Taschek	U.S. Army CECOM
W.P. Teagan, Chairman	Arthur D. Little
FACILITATORS: Phil DiPietro	Energetics, Incorporated
Robyn McGuckin	

* Presenter for report-out

Fuel Processing- Session B: Issues

(**©** = Vote for Priority Topic)

PERFORMANCE	Stack Sensitivity (Sulfur & Salt) Poison	LOW CAPACITY OF System	INTERNAL REFORMING	Fuel Effect on Fuel Processor	FUEL PROCESSING BOP
 Long-term testing durability Long life of reformer materials at low cost Start-up time Load following 	 Anode Poisoning Salt Sulfur 	 Difficult for Diesel Availability of low cost small scale reformer OOOOO Thermal losses in small systems Reliability at small scale 	 Poisoning Cracking Thermal management O Preconditioning of fuel 	 Deactivation of catalyst Thermal Coking Sooting Poisoning 	 Sulfur aborption/disposal (filter cartridge) using alkali metal Long life desulfurizer Water sufficiency

Fuel Processing – Session B: Opportunities

 $(\bigcirc = \text{Vote for Priority Topic})$

Making Diesel Fuel Processor Work kkkkkkkkk	Propane/Natural Gas Fuel Processor as Cheap as Possible kkkkkkkkk k	Internal Reforming kkkkkk	BALANCE OF PLANT kkk	OTHER ITEMS
 Make poison resistant partial oxidation reactor ceramic membrane Demonstrate a two stage (diesel) steam reformer (fluid-bed/Plug Flow) for 100 kWe system and work backwards down Liquid fuel processors to remove sulfur—disposable filter-1 gallon can processes 20 gallons of fuel Come up with a dual catalyst that tolerate sulfur anode and coking Integrated reformer/heat transfer approach Plate reformers Fuel preprocessor Remove sulfur Increase fuel quality Develop inert, stable materials 	 Develop low-cost, high efficiency gaseous fuel reformer Very inexpensive oxidative reforming unit for natural gas and propane Design for low cost manufacturing Integrated fabricate development 	 Models for internal reforming stack design – build Graded anode development Oxidative internal reforming process for natural gas and propane Mixing fuel in cell rather than plug flow to improve internal reforming Develop a multi-fuel tolerant internal reforming core module (cell) 	 Sensors Materials Manufacturing Techniques Reduce parasitic load 	 Accelerated durability testing reformer/stack Long term materials research and tests System optimization Ultra-rich internal combustion engine as POX fuel processor shaft power out quick start Coking-resistant coating for preconditioner

FUEL PROCESSOR FOR DIESEL AND LOGISTIC FUELS	ULTRA LOW-COST HIGH EFFICIENCY FUEL Processor for Natural Gas and Propane	INTERNAL REFORMING (ON-ANODE)
 Novel Processes Ceramic Membrane POX Integrated heat transfer microchannel /plate reformer Two stage heavy fuel steam reformer Materials resistant to impurities Pilot plant At 20 kW Fuel Pre-processing Liquid phase desulfurization Better ways to remove sulfur during processing Materials research to develop anode catalyst to resist sulfur and carbon BOP 5 KW Systems integration Perform R&D on components with integration in mind Thermally integrated reforming 	 Develop low cost, high efficiency gaseous fuel reforming Steam POX Other Thermally integrated reforming Build at 5 kW Starting point. Simplify fuel processors designed for PEM stacks Multi-fuel R&D Integrated fabrication development Design low cost manufacturing 	 Most effort is on steam reforming, could look at POX as well Lab scale experimentation Modeling Thermal Chemical Electro-chemical Multi-fuel tolerant core module Graded anode Fuel mixing

Fuel Processing – Session B: Actions

Fuel Processing – Session B: Report-Out

 $(\bigcirc = \text{Vote for Priority Topic})$

Issues	Opportunities	ACTIONS	Comment
 Dealing with diesel and logistic fuels Lack of demonstrated internal reforming capability Low capacity Sensitivity of stack to sulfur, soot and salt Lack of demonstrated performance durability Reliability, long life, start up, multiple fuels, Diesel and logistic fuels makes problem much more difficult Internal reforming not clear you can be successful Low capacity Sulfur, soot, salt Performance 3 	 Developing a compact (5-20 kW) diesel fuel processor Light fuels (natural gas, propane, gas) as low cost and compact as possible OOOOOOOOO Internal reforming (on-anode) OOOOOOOO Developing a compact diesel fuel processor full preprocessor, sulfur removal, coking pox, steam Light fuels processor mass manufacturing to get low cost reliability, POX, steam, novel Internal 	 Diesel and logistic fuel Novel processing Fuel pre-processing Anode to resist sulfur and carbon BOP Natural gas, propane and gasoline Thermal integration Small size DFMA Internal reforming Lab tests/modeling Graded anode Fuel mixing 	 Requirement of heavy fuels complicates vision Other goals at risk Alternate strategy – focus on natural gas for market introduction Early stage R&D on heavy fuels

V. MODELING AND SIMULATION GROUP SUMMARY

Modeling and simulation issues for fuel cells are best discussed by considering issues that impact the fundamental cell, component, stack, or system, or crosscut through all of these scales.

<u>Issues</u>

The following issues received the most votes:

- Validation/benchmark data for models/modeling
- Barrier posing of critical questions answerable by appropriate models
- Electro-chemical reaction rates and mechanisms
- Lack of suitable multi-physics engineering models
- Diversity of scales hinders Computational Fluid Dynamic (CFD) applications in multi dimensions at stack level.
- Total life cycle cost/performance analysis and optimization

<u>R&D Opportunities</u>

The R&D opportunities were categorized into five header topics. The following are the header topics and the corresponding R&D opportunities that received a multiple number of votes:

Crosscutting

- Joint validation benchmarks where more than one group develops, characterizes, tests, and models
- Model SOFC operations: start-up, part-load, shut-down (load following)
- Define precisely what validation data are needed and get it
- Perform uncertainty analysis on fuel cell models at all levels (focus on numerical errors)

Cell/Fundamental

- Development of fundamental multi-dimensional models with emphasis on electrochemical and kinetic transport aspects
- Determine electro-chemical rates and mechanisms: measure and model
- Develop 3D fundamental multi-scale model for micro-structural analysis and design

Component

• None

Stack

• Develop coupled multi-dimensional multi-physics engineering model for stack with benchmark problem set

System

• Build reliability model of SOFC system

<u>Actions</u>

To take advantage of the top three R&D opportunities, the following actions should be carried out:

Develop Models for the Cell and for the Stack:

- Multi-dimensional, multi-physics
- Develop benchmark problem set (for stack)
- Electrochemical, kinetic, transport emphasis for cell

Benchmark Development:

- Developed and characterize benchmark cells
- Test to provide data on benchmark cells
- Models will be developed for benchmark cells

Model SOFC Operation (Start Up, Part Load, Shut Down):

- Industries establish the off-design conditions and requirements
- Develop coupled transient models
- Validate the models

MODELING AND SIMULATION

PARTICIPANTS

NAME	AFFILIATION
Said Al-Hallaj*	IIT, Chicago
David H. Archer	Carnegie Mellon University
Mike Batham	California Energy Commission
David Black	CFD Research Corp.
Damon Bresenham	Generac Power Systems
Ismail Celik	West Virginia University
C.P. Chen	University of Alabama in Huntville
John Deur	ADAPCO
Emile Ettedgui	RAND
Randall Gemmen, Chairperson	DOE/NETL
Comas Haynes	Georgia Tech
Moe Khaleel, Chairperson	Pacific Northwest National Lab.
Jim Miller	Argonne National Lab.
Jeff Neff	EG&G
John Plunkett	EG&G
Michael Prinkey	Fluent Inc.
William Rogers	Fluent Inc.
FACILITATOR: Ed Skolnik	Energetics, Incorporated

* = Presenter for report-out

Modeling and Simulation: What Are the Science and Technical Issues to Achieving the Vision?

(**©** = Vote for Priority Topic)

CROSSCUTTING ISSUES	Cell/Fundamental Models	COMPONENT MODELS	STACK MODELS	System Models
 Validation/benchmark data for models/modeling Barrier—posing of critical questions answerable by appropriate models Cost functions (accurate) {lack thereof} Cost functions (accurate) {lack thereof} Dynamic communication with materials and manufacturing groups (lack thereof) Co Lack of education and training on fuel cell technologies Connection and communication between modeling (scales of modeling) groups Lack of public domain software Need real-life values for model parameters Lack of operating codes and standards for design modeling Lack of benchmark for verification 	 Electro-chemical reaction rates and mechanisms COOC Lack modular cell-level physical-mathematical models for transport processes Simulating direct Internal reformation transport phenomena There is a need for greater detailed information from models Need constitutive equations for mirco/fundamental models 	 Better models for fuel processing C 	 Lack of suitable multi-physics engineering models Thermal, electro-chemical, transport coupling COCOCOC Diversity of scales hinders computational fluid dynamic (CFD) applications in multi-dimensions at stack level COCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCO	 Total life cycle cost/performance analysis and optimization Model cost/ maintenance trade-offs Fuel cell fabric. Auxiliary equipment installation CCC Reliability/ Availability/ Maintainability (RAM) models

Modeling and Simulation: What Are the R&D Opportunities to Overcome the Issues?

(**©** = Vote for Priority Topic)

	CROSSCUTTING	Cell /fundamental	Component	STACK	System
Validation Oportunities	 Define precisely what validation data that we need and get it (database) OOOO 	 Material databases electrochemical and thermal and failure data Develop tests and test standards for measuring material properties especially interfacial properties 			
Computation Opportunities (Modeling)	 Model SOFC Operations: Start-up, part-load, shut-down (Load following) OOOOO Handbook of Fuel Cell Model equations and thermal papers Thermoeconomic design studies Develop efficient numerics for such complex problems Perform uncertainty analysis on fuel cell models at all levels (focus on numerical errors) OO 	 Development of fundamental multi- dimensional models which emphasizes on: electrochemical, kinetic transport aspects on the cell level. Develop 3D fundamental multi-scale model for microstructural analysis and design 	• Fuel reformation models ♥	 Develop coupled multi- dimensional multi-physics engineering model for stack with benchmark problem set Coordinated joint effort to develop a multi-dimensional robust, public domain computer code for stack Develop modeling tools for predicting residual stress due to fabrication 	 Build reliability model of SOFC system Build diagnostic model of SOFC system Fuel cell cost algorithms
Joint Validation/ Computation Opportunities	 Benchmarks more than one group develop and characterize <u>same</u> cell design more than one group test above and provide detailed data more than four groups model OOOOOOOO Define metrics or figure of merit and how they relate to one another 	 Determine electro-chemical rates and mechanisms: measure and model OOO Model Equation Development Research on kinetics (electrochem and reforming) Propose and test models Publish all results 		 Understand failure mechanisms in stack/cell O 	

Modeling and Simulation: What Are the Actions to Take Advantage of the R&D Opportunities?

R&D OPPORTUNITY	ACTIONS 0-5 YEARS	ACTIONS 5-10 YEARS	LEAD ROLE	OTHER ISSUES
DEVELOP MODELS FOR STACK AND CELL • Multi-dimensional, multi-physics • With benchmark problem set (for	Evaluate (and communicate) existing model base (E)		Government, Industry (NETL) with Industry and Academia	 Consider concurrent engineering Support Vision 21 virtual plant demonstration prototyping
 stack) Electrochemical, kinetic, transport emphasis for cell 	 Different groups to do different models electrochemical, kinetic, etc. (R) Develop design/applications models that address SECA vision (D) Incorporate into overall system model (E) 	 Refine models as necessary (input from benchmarks) (D) Accommodate technical breakthroughs Modeling to accommodate markets (implement models P/E we have developed) (D/E) Reduce the turn-around time to speed the design cycle (D) 	Government initiates, develops consortium of government, industry, academia; academia or national lab appointed to coordinate	
BENCHMARK DEVELOPMENT • >1 Group development and	• Develop and characterize benchmark cells (D/E)		Government with academia	none
 A Group development and characterize same cell design >1 Group test cell and provide 	• Test and provide detailed data (D/E)		Government with academia	
 detailed data >4 Groups model 	• Model (D/E)		Government with academia and industry	
Model SOFC Operation (Start up, Part Load, Shut Down)	• Establish off-design conditions and requirements (E)		Industry with government	none
,	• Development coupled transient models (D/E)		Government with academia	
	• Validate model (D/E)		Government with industry	
		• Integration with design cycle (E)	Industry	4
		 Accommodate technology breakthroughs (D/E) 	Government with Academia and industry	

Key: E = Engineering

D = Development

R = Research

Issues	R&D OPPORTUNITIES	Actions
 System modeling Total life cycle cost performance analysis optimization Stack Models lack of suitable multi-physics engineering models (thermal, electrochemical, transport coupling) Cross-cutting Issues Validation/benchmark data for models 	 Stack computational Coupled multi-dimensional Multi-physics engineering model (with benchmark problem set) Cell Computational Fundamental models (multi-dimensional) with emphasis on: Electrochemical Kinetic Transport aspects Benchmarks Characterize cell design Obtain detail test data Develop model 	 Models for Cell /stack 0-5 Years, Evaluate existing models, G/I 0-5 Develop electrochemical, kinetic, models G/I 0-5, Application models for SECA vision G/I 0-5, Incorporate into system Model G/I 5-10 Refine models (for tech. Breakthroughs) G/I 5-10 Reduce turnaround time to speed design cycle G/I Benchmark 0-5 Develop/characterize benchmark cells G 0-5 Test and provide detailed data G/A 0-5 Model development G/A/I SOFC Operation Model 0-5 Develop transient model G 0-5 Develop transient model G 0-5 Validate model G/I 5-10 Integrate with design cycle I 5-10 Accommodate technical breakthrough G

Modeling and Simulation: Report-Out

Key: I = Industry

G = Government

A = Academia

VI. POWER ELECTRONICS GROUP SUMMARY

<u>Issues</u>

The following issues received the most votes:

- Complex system interface
- Modular family architecture
- Poor load following
- Use of SiC silicon carbide
- Cooling thermal management
- Lifetime
- Cost discrepancy

Opportunities

The R&D opportunities were categorized into four header topics. The following are the header topics and the corresponding R&D opportunities that received a multiple number of votes:

Thermal Management

• Higher temperature components, e.g., capacitors

Interface

- Integrated devices
- Systems dynamic modeling

Cost

• DFMA –design for manufacture and assembly

Reliability

• Improve component materials

<u>Actions</u>

By combining the component opportunities, actions were developed for the top two opportunities.

Integrated Devices Interface:

- Align with manufacturer
- Develop open architecture for common module hardware and software toolkits

- Identify common denominators from developers across applications
- Assess packaging interconnections
- Develop codes and standards across industries
- Develop communication protocols
- Develop predictive controls

Components Reliability and Thermal Management:

- All components need to be better, faster, smaller, and cheaper
- Re-engineer capacitor
- Improve higher temperature capabilities for connections, solder, circuit boards, and substrate
- Improve switching characteristics with lower losses and higher temperature
- Improve heat sink integrated thermal management

POWER ELECTRONICS

PARTICIPANTS

NAME	AFFILIATION
Don Adams, Chairperson*	Oak Ridge National Lab
Thom Broe	Sustainable Energy Technology
T.P. Chen	Nexant, Inc.
Michel Jullian	OCM Technology
John Kalmakoff	Sustainable Energy Technologies
Benson P. Lee	Technology Management, Inc.
Hans Maru	FuelCell Energy, Inc.
Don McConnell	Pacific Northwest National Lab
Tim McDonald	Pinnacle West Capital Corp (APS)
Tim McIntyre	Oak Ridge National Lab
Steve Satzberg	Office of Naval Research
Tim Theiss	Oak Ridge National Lab
Mark Williams	NETL
FACILITATOR: Kevin Moore	Energetics, Incorporated

* = Presenter for report-out

Power Electronics: What Are the Scientific and Technical Issues to Achieve SECA Vision by 2010?

(**O** = Vote for Priority Topic)

INTERFACE	TOPOLOGY	RELIABILITY	Соѕт
 Domain vs. stationary Synchronize to grid Complex system interface Ococococ Dynamic range System inverter ganging Output power quality BOP – Balance of Plant Modular family architecture Ocococo Integrated controls DC chopper Programability on fly Remote dispatch Black start Lousy load following Ocococo 	 Switches topology Passive components SiC – Silicon Carbide OOO 	 Cooling thermal management Graceful degradation Noise control Lifetime COCOC Telemetry remote diagnostics 	 Size, volume, and weight Contract of scale Cost discrepancy Cost

Power Electronics: What Are the R&D Opportunities to Overcome Issues to SECA?

 $(\bigcirc = \text{Vote for Priority Topic})$

THERMAL MANAGEMENT	INTERFACE	Соят	RELIABILITY
 Higher temperature components, e.g., capacitors Object cooling of silicon or SiC Cheap diamond film Integrated electronic within cell Integrated electronic within cell 	 Definition of system requirements Load prediction Establish standards Challenge 5 kW choice Plug and Play Co Low cost storage high density caps Systems dynamics modeling CoO Functional tradeoff studies Integrated devices COOOOOOO Ganging inverters 	 Cost tradeoffs studies Soft switching topology Integrated devices Manufacturing process development DFMA OCO Grid interconnect standards Packaging of PE module 	 Improve component materials OCOCOC Prognostics Topology choice, e.g., redundancy, multi-level Robust design Soft failure

Power Electronics: What Actions to Take Advantage of R&D Opportunities?

R&D O PPORTUNITY	ACTIONS 0-5 YEARS	TYPE OF ACTION	ACTIONS 5-10 YEARS	TYPE OF ACTION	LEAD ROLES
Integrated Devices "Interface"	Align with manufacturer	Е			Industry
Board or chip moduleFuel cell electronics with	Develop open architecture for common module hardware and software toolkits	E,D			• Industry, University, Government
 power electronics Transformerless design 	 Identify common denominators from developers across applications 	Е			• University, Government
 PE-DC Bus in box; PE- AC-Grid outside 	Packaging interconnections	E,D,R			 Industry, University, Government
	Develop codes and standards across industries	Е			Government, University, Industry
	Communication protocols	E,D			• Government, University, Industry
	Predictive controls	E,D,R			• Government, University, Industry
 Improve Component Materials "Reliability" and 	• Better, faster, smaller, cheaper	D,R	• Better, faster, smaller, cheaper	E,D	• Government, University, Industry
Higher Temperature Components, "Thermal	Re-engineer capacitor	R	Re-engineer capacitor		• Government, University, Industry
Manage" - Capacitors-inductors - Connections - Switch - Solder	 Higher temperature capabilities Connections Solder Circuit Boards Substrate 	D,R	Higher temperature capabilities	E,D	Government, University, Industry
 Circuit boards Substrates Heat sinks 	Switch Improved switching characteristics Lower losses Higher temperature	D,R	• Switch	E,D	Government, University, Industry
	Heat sink-integrated thermal management	D,R	Heat sink	E,D	Government, University, Industry

Key: E = Engineering

D = Development

R = Research

Power Electronics	Issues	R&D OPPORTUNITIES	ACTIONS
 Is power electronics in the fuel cell "box" or not? Ganged 5 kW modules are not practical for power electronics? Status \$7/kW mobile in 3 years \$90+% efficiency Air-cooled industrial drives 	 Complex system interface Modular family architecture Lousy load following Thermal management Lifetime 	 Integrated devices for interface Reliability – improve component materials Thermal Management – higher temperature components 	 Integrated devices Align with manufacturers Develop open architecture hardware and software Identify common denominators from developers Develop codes and standards Communication protocols Component materials: capacitors, inductors, connections, switches, solder, circuit boards, substrates, heat sinks Better Faster Smaller Cheaper

Power Electronics: Report-Out

VII. THERMAL SYSTEMS GROUP SUMMARY

<u>Issues</u>

The following issues received the largest number of votes:

- Thermal enclosure
- Water recovery system
- Air pre-heater cost/performance trade-off
- Excessive heat losses in small high temperature systems
- Afterburner pre-heater
- Waste heat utilization (power generation/co-generation)
- Transient stresses during normal and abnormal events (loss of cooling air)
- Start-up overall speed

Opportunities

The R&D opportunities were categorized into five header topics. The following are the header topics and the corresponding R&D opportunities that received a multiple number of votes:

Water Management Strategy

• Designs using recycled steam

Air Preheater

- Materials and fabrication
- Integrated catalytic combustion
- Configuration optimize design

Overall Startup Speed

- Reduce thermal capacitance
- Optimize idle mode strategies

Transient Stresses During Normal and Abnormal Events

• Dynamic modeling (transient)

Thermal Enclosure: Material, Design, & Cost

- Better insulating materials
- Optimize compartment design

<u>Actions</u>

Due to time constraints, only two of the highest priority opportunities could be analyzed.

Water Management - Designs Using Recycled Steam:

- System study of onsite/onboard water vs. recycle steam
- Develop designs for water recovery
- Prototype water recovery
- Research ways to recover water without phase change
- Develop design without phase change
- Prototype without phase change

Thermal Enclosure – Better Insulating Materials:

- Optimize design of the compartment
- Study family of applicable materials and select material
- Prototype

THERMAL SYSTEMS

PARTICIPANTS

NAME	AFFILIATION
Sy Ali	Rolls-Royce Corporation
Richard A. Bajura	West Virginia University (NRCCE)
Mike Binder	U.S. Army CERL
Claude Cahen	Unicom Distributed Energy
Minking K. Chyu	University of Pittsburgh (Mechanical Engineering)
Jim Conklin	Oak Ridge National Laboratory
Romesh Kumar, Chairperson	Argonne National Laboratory
Bob Lorand	SAIC
Irven Miller	I.B. Miller, Inc.
Eric Simpkins	FuelCell Energy Inc.
Joe Strakey	DOE/NETL
Larry Van Bibber*	SAIC
Ed Yarbrough	Honeywell
FACILITATOR: Alicia R. Dalton	Energetics, Incorporated

* = Presenter for report-out

Thermal Systems: What Are the Issues (Science and Technology) to Achieving the Vision? (© = Vote for Priority Topic)

OTHER	COMPONENTS	INTEGRATION	OPERATING STRATEGIES
Sulfur in fuel creates many of the thermal system issues	 Materials No high temperature recycle blower available to recycle anode exhaust back to inlet to provide water Thermal enclosure Materials Design Cost Catalyst and housing material selection driven by temperature Air preheater cost/ performance trade off OOO Air preheater: need high active heat exchange surface area per unit active volume/weight OOO Water Recovery System OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	 Excessive heat losses in small high temperature systems COOO Using afterburner as startup CO Waste heat utilization (power generation/cogeneration) COOO Reformer/Stack Afterburner/Preheater COOOO Air cooled fuel cell stack is too difficult to manage Temperature gradients with air flow uniformity, maintenance (Seals) Maintaining system integrity due to temperature gradients in space and time CO NOx (Emissions) governed by temperature 	 Designing for extremes Transient stresses during normal and abnormal events (loss of cooling air) OOOOOO Thermal/overall operator training, diagnostics Temperature/flow control system Oo Startup Overall speed OoooO Thermal Human Safety Noise Emissions Heat Air cooled fuel cell stack is too diffi cult to manage Temperature gradients with air flow uniformity, maintenance

Thermal Systems: What Are the R&D Opportunities to Overcome the Issues?

(**©** = Vote for Priority Topic)

WATER MANAGEMENT Strategy	AIR PREHEATER	OVERALL STARTUP SPEED	TRANSIENT STRESSES During Normal and	THERMAL ENCLOSURE: Materials, Design, &
			Abnormal Events	Соѕт
 Optimize design Designs using recycled steam OOOOOO Misc. – Water for fuel processor 	 Configuration – optimize design Materials and fabrication OOOO Integrated catalytic combustion OOOO 	 Reduce thermal capacitance Optimize idle mode strategies Oe Develop robust hardware design O 	 Ceramics – improve, toughened Improve hardware design Dynamic modeling (transient) Controls design O 	 Better insulating materials Ocean Cheaper materials O Optimize compartment design OOOO

OPPORTUNITY -ACTION TYPE TIMEFRAME **OTHER FACTORS** ACTION LEADER WATER MANAGEMENT - DESIGNS USING System study onsite/onboard water vs. Е DOE/DoD 6 mo. **Recycled Steam** recycle steam Develop designs for water recovery Е 18 - 24 mos. Core Tech 1 - 3 yr.. (parallel to research) Prototype (water recovery) Е Industry Research ways to recover water without phase R 1 – 3 yr.. Core Tech change Develop design (without phase change) Е 1 - 3 yr.. Core Tech Prototype (without phase change) Е 1 – 3 yr.. Industry **Opportunity** – ACTION ACTION TYPE TIMEFRAME LEADER **OTHER FACTORS** 1 – 2 yr. Note: What must be in the box? THERMAL ENCLOSURE Optimize Design Е Industry 1 – Main box design - Better Insulating 2 – Feed platelets MATERIALS D Study family of applicable materials 6 mos. – 1 yr. Core Tech Select Material 1 – 2 yr. Prototype Е Industry

Thermal Systems: What Are the Actions to Take Advantage of the R&D Opportunities

Key: E = Engineering

D = Development

R = Research

Thermal Systems – Report Out (☺ = Vote for Priority Topic)

THERMAL SYSTEMS	Issues	Opportunities
 Thermal Systems What are they? Everything Else Air Preheater After burner Thermal enclosure H2O management Et al. Could be the Achilles Heel 	 Categories Components Operating Strategies Integration Top Vote Getters Thermal enclosure OOOOOOO Air preheater OOOOOO Transients during normal & abnormal events OOOOOO Overall startup rate OOOOOO H₂O recovery system OOOOO 	 Categories Air preheater Overall startup speed Transients Stresses Thermal enclosure H₂O Management Strategies Top Vote Getters Design of H2O management system using recycled steam OOOOOO Better insulating materials for thermal enclosure OOOOOO Air preheater materials and fabrication OOOOO Integrated catalytic combustor with air preheater OOOOO Reduced thermal capacitance OOOOO Dynamic modeling OOOO

Opportunity	ACTIONS	TIMEFRAME	LEAD	OTHER
Water Management Designs Using Recycled Steam	System Study: (E) On board Water vs. Recycle Steam	6 months	DOE/DoD	
	Develop Designs for Water Recovery (E)	18 - 24 months	Core Tech	
	Prototype (E) (water recovery)	1-3 years	Industry	
	• Research Ways to Recovery Water Without Phase Change (R)	1 - 3 years (parallel to above)	Core Tech	
	• Develop Design (E) (without phase change)	1-3 years	Industry	
	Prototype (E) (without phase change)	1-3 years		
Thermal Enclosure – Better Insulating Materials	Optimize Design	1-2 years	Industry	 What must be in the box? Main box Feed platelets
	Study Family of Applicable Materials Select Material	6 mos. – 1 year	Core Tech	
	Prototype	1-2 years	Industry	

Key: E = Engineering

D = Development

R = Research

Appendix B Participants

- Jeff Abboud Fuel Cell Power Association P.O. Box 7574 Arlington, VA 22207 Phone: 703/623-0698 Fax: 703/536-1927 E-mail: abboud@advocatesinc.com
- 2. Donald J. Adams Oak Ridge National Laboratory Bear Creek Road P.O. Box 2009, MS 8038 Oak Ridge, TN 37831 Phone: 865/576-0260 Fax: 865/241-6124 E-mail: adamsdj@ornl.gov
- Gerald Daniel Agnew Rolls-Royce PLC
 P.O. Box 31
 Derby, United Kingdom, DE24 8BJ
 Phone: 011 441 332 269 181
 Fax: 011 441 332 248 000
 E-mail: gerry.agnew@rolls-royce.com
- 4. Said Al-Hallaj IIT - Chicago 10 West 33rd Street Chicago, IL 60616 Phone: 312/567-5118 Fax: 312/567-6914 E-mail: alhasai@charlie.cns.iit.edu
- Sy A. Ali Rolls-Royce Corporation P.O. Box 420 Indianapolis, IN 46206-0420 Phone: 317/230-6864 Fax: 317/230-2900 E-mail: sy.a.ali@allison.com
- K. R. (Ammi) Amarnath EPRI Solutions, Inc. 3412 Hillview Avenue Palo Alto, CA 94304 Phone: 650/855-2548 Fax: 650/855-8574 E-mail: aamarnat@epri.com

- Harlan U. Anderson University of Missouri at Rolla 303 Materials Research Center Rolla, MO 65401 Phone: 573/341-4886 Fax: 573/341-6151 E-mail: harlanua@umr.edu
- David H. Archer Carnegie Mellon University 114 Kentzel Road Pittsburgh, PA 15237-2816 Phone: 412/268-6808 Fax: 412/268-3348 E-mail: archerdh@andrew.cmu.edu
- 9. Tim Armstrong Oak Ridge National Laboratory 1 Bethel Valley Road Mailstop 6084 Oak Ridge, TN 37831-6084 Phone: 865/574-7997 Fax: 865/574-4357 E-mail: armstrongt@ornl.gov
- 10. Rita A. Bajura National Energy Technology Laboratory U.S. Department of Energy 3610 Collins Ferry Road Morgantown, WV 26507-0880 Phone: 304/285-4511 Fax: 304/285-4292 E-mail: rita.bajura@netl.doe.gov
- 11. Richard A. Bajura West Virginia University NRCCE
 P.O. Box 6064 Morgantown, WV 26506-6064
 Phone: 304/293-2867 x 5401
 Fax: 304/293-3749
 E-mail: bajura@wvu.edu

- 12. William Barker ITN Energy Systems, Inc. 12401 West 49th Avenue Wheat Ridge, CO 80033 Phone: 303/420-3646 Fax: 303/285-5162 E-mail: wbarker@itnes.com
- Scott Barnett Northwestern University Materials Science Dept. Evanston, IL 60208 Phone: 847/491-2447 Fax: 847/491-7820 E-mail: s-barnett@nwu.edu
- 14. James T. Bartis Rand
 1200 South Hayes
 Mailstop 6150
 Arlington, VA 22202-5050
 Phone: 703/413-1100 x 5317
 Fax: 703/413-8111
 E-mail: bartis@rand.org
- 15. Michael Batham California Energy Commission
 1516 Ninth Street Mailstop 43 Sacramento, CA 95814-5512 Phone: 916/654-4548 Fax: 916/653-6010 E-mail: mbatham@energy.state.ca.us
- 16. David R. Bauer Ford Motor Company Mailstop SRL-3182 P.O. Box 2053 Dearborn, MI 48121 Phone: 313/594-1756 Fax: 313/323-1129 E-mail: dbauer3@ford.com
- 17. Donald F. Beal Performance Ceramics Company 2346 Major Road Peninsula, OH 44264 Phone: 330/657-2884 Fax: 330/657-2226 E-mail: dfb@performanceceramics.com

- 18. Ray Benn United Technologies Research Center 411 Silver Lane East Hartford, CT 06108 Phone: 860/610-7772 Fax: E-mail:
- 19. Glen Benson Aker Industries, Inc.
 952 - 57th Street Oakland, CA 94608-2842
 Phone: 510/658-7248
 Fax: 510/658-7292
 E-mail: jkerindustries@hotmail.com
- 20. David A. Berry National Energy Technology Laboratory U.S. Department of Energy 3610 Collins Ferry Road Morgantown, WV 26507-0880 Phone: 304/285-4430 Fax: 304/285-4469 E-mail: dberry@netl.doe.gov
- 21. Ed Beyma Parsons Corporation 19644 Club House Road Gaithersburg, MD 20886 Phone: 301/869-9191 Fax: 301/977-7507 E-mail: ed.f.beyma@parsons.com
- 22. Michael J. Binder U.S. Army CERL P.O. Box 9005 Champaign, IL 61826-9005 Phone: 217/373-7214 Fax: 217/373-6740 E-mail: m-binder@cccer.army.mil
- 23. David Lee Black CFD Research Corporation 215 Wynn Drive Huntsville, AL 35805 Phone: 256/726-4874 Fax: 256/726-4806 E-mail: dlb@cfdrc.com
- 24. Jeff Bolebruch Blasch Precision Ceramics 580 Broadway Albany, NY 12204 Phone: 518/436-1263 x 42 Fax: 518/436-0098 E-mail: jbolebruch@blaschceramics.com

- 25. Brian Borglum Siemens Westinghouse Power Corp.
 1310 Beulah Road Pittsburgh, PA 15235 Phone: 412/256-1696 Fax: 412/256-5504 E-mail: brian.borglum@swpc.siemens.com
- 26. Damon Bresenham Generac Power Systems, Inc. P.O. Box 8 Waukesha, WI 53187 Phone: 262/544-4811 x 2125 Fax: 262/544-4851 E-mail: dbresenham@generac.com
- 27. Thomas Kenneth Broe Sustainable Energy Technology 1520 4th Street, S.W. Suite 850 Calgary, Alberta, Canada, T2R 0Y4 Phone: 403/508-7177 Fax: 403/205-2509 E-mail: broe@sustainableenergy.com
- 28. Jacob Brouwer National Fuel Cell Research Center University of California, Irvine 131 ELF Irvine, CA 92697-3550 Phone: 949/824-1999x221 Fax: 949/824-7423 E-mail: jb@nfcrc.uci.edu
- 29. Claude Cahen Unicom Distributed Energy 2315 Enterprise Drive Westchester, IL 60154 Phone: 708/236-8071 Fax: 708/236-8051 E-mail: claude.cahen@ucm.com
- 30. Richard T. Carlin Office of Naval Research
 800 North Quincy Street Arlington, VA 22217-5660
 Phone: 703/696-5075
 Fax: 703/696-6887
 E-mail: carlinr@onr.navy.mil
- 31. Ann Cecchetti Battelle - PNNL 10420 Greenacres Drive Silver Springs, MD 20903 Phone: 202/646-5228 Fax: 202/646-7833 E-mail: acecchetti@aol.com

- 32. Ismail B. Celik West Virginia University Mechanical & Aerospace Engineering P.O. Box 6101 Morgantown, WV 26506-6106 Phone: 304/293-3111 Fax: 304/293-6689 E-mail: icelik@cemr.wvu.edu 33. Ravi Chandran MTCI 6001 Chemical Road Baltimore, MD 21226 Phone: 410/354-0420 x 16 Fax: 410/354-9894 E-mail: rchandran@mtcionline.net 34. Denise Chen NSWC Carderock 5001 S. Broad Street Philadelphia, PA 19112-5083 Phone: 215/897-8650 Fax: 215/897-7874 E-mail: chend@nswccd.navy.mil 35. Tan-Ping Chen Nexant, LLC 45 Fremont Street San Francisco, CA 94105-2210 Phone: 415/768-1419 Fax: 415/768-3580 E-mail: tpchen@nexant.com 36. C. P. Chen University of Alabama in Huntsville EB 130, Chemical Engineering Huntsville, AL 35899 Phone: 256/890-6194 Fax. E-mail: cchen@che.uah.edu 37. Larry Chick Pacific Northwest National Laboratory Mailstop K2-44
 - P.O. Box 999 Richland, WA 99352 Phone: 509/375-2145 Fax: 509/375-2186 E-mail: larry.chick@pnl.gov

38. Minking K. Chyu University of Pittsburgh
648 Benedum Hall
Pittsburgh, PA 15261
Phone: 412/624-9783
Fax: 412/624-4846
E-mail: mkchyu@engrng.pitt.edu

39. Michael A. Cobb Michael A. Cobb & Company 1688 Brookwood Drive Akron, OH 44313-5068 Phone: 330/869-8046 Fax: 330/869-8058 E-mail: cobbcomp@aol.com

40. James Conklin Oak Ridge National Laboratory Building 9108
P.O. Box 2009, MS 8088
Oak Ridge, TN 37831
Phone: 865/574-0567
Fax: 865/574-2102
E-mail: conklinjc@ornl.gov

41. Thomas B. Dade Newport News Shipbuilding 4101 Washington Avenue Building 600-1, Dept. E86 Newport News, VA 23607 Phone: 757/688-0723 Fax: 757/688-1073 E-mail: dade tb@nns.com

42. Alicia R. Dalton Energetics 2414 Cranberry Square Morgantown, WV 26508 Phone: 304/594-1450 Fax: 304/594-1485 E-mail: alicia.dalton@netl.doe.gov

43. Sandy J. Dapkunas NIST
100 Bureau Drive Bldg. 223, Room A256 Gaithersburg, MD 20899-8520 Phone: 301/975-6119 Fax: 301/975-5334 E-mail: sandy dapkunas@ta.doc.gov 44. Pat Davis

U.S. Department of Energy
1000 Independence Ave., S.W.
Mailstop EE-32
Washington, DC 20585
Phone: 202/586-8061
Fax: 202/586-9811
E-mail: patrick.davis@ee.doe.gov

45. William J. Dawson NexTech Materials, Ltd.
720-I Lakeview Plaza Blvd.
Worthington, OH 43085-4733
Phone: 614/842-6606
Fax: 614/842-6607
E-mail: dawson@nextechmaterials.com

46. Lutgard C. DeJonghe University of California at Berkeley Lawrence Berkeley National Lab
1 Cyclotron Road, MS Bldg. 62-203 Berkeley, CA 94720
Phone: 510/486-6138
Fax: 510/486-4881
E-mail: dejonghe@lbl.gov

- 47. Richard A. Dennis National Energy Technology Laboratory U.S. Department of Energy 3610 Collins Ferry Road Morgantown, WV 26507-0880 Phone: 304/285-4515 Fax: 304/285-4403 E-mail: rdenni@netl.doe.gov
- 48. John Deur ADAPCO
 60 Broadhollow Road Melville, NY 11747
 Phone: 631/549-2300
 Fax: 631/549-2654
 E-mail: jdeur@adapco.com
- 49. Duane Dimos Sandia National Labs P.O. Box 5800 Albuquerque, NM 87185-0756 Phone: 505/844-6385 Fax: 505/844-9781 E-mail: dbdimos@sandia.gov

50. Herbert H. Dobbs U.S. Army TACOM 34461 Arundel Warren, MI 48397-5000 Phone: 810/574-4228 Fax: 810/574-4244 E-mail: dobbsh@tacom.army.mil 51. Gregory Dolan U. S. Fuel Cell Council 1625 K Street, N.W. Suite 725 Washington, DC 20006 202/293-5500 Phone: Fax: 202/785-4313 E-mail: gdolan@usfcc.com 52. Richard Dye U.S. Department of Energy 1000 Independence Avenue, S.W. Mailstop FE-26 Washington, DC 20585 Phone: 202/586-6499 Fax: 202/586-7085 E-mail: richard.dye@hq.doe.gov 53. Christopher J. Egan U.S. Navy / NAVSEA 2531 Jefferson Davis Highway Crystal Park, Suite 817 Arlington, VA 22242-5169 Phone: 703/604-6052 x 548 Fax: 703/604-6056 E-mail: egancj@navsea.navy.mil 54. Emile Ettedgui Rand 1200 S. Hayes Street Mailstop 6102 Arlington, VA 22202-5050 Phone: 703/413-1100 x 5427 Fax: 703/413-8111 E-mail: emile@rand.org 55. Peter Faguy

Feter Faguy
 MicroCoating Technologies
 3798 Green Industrial Way
 Chamblee, GA 30341
 Phone: 678/300-3503
 Fax: 678/530-9151
 E-mail: pfaguy@microcoating.com

Samuel M. Fleming 56. INEEL P.O. Box 1625 Idaho Falls, ID 83415-3898 Phone: 208/526-5877 Fax: 208/526-4563 E-mail[.] flemsm@inel.gov Chris Forbes 57. Siemens Westinghouse Power Corp. 1310 Beulah Road Pittsburgh, PA 15235 Phone: 412-256-2022 Fax: 412-256-1233 E-mail: christian.forbes@swpc.siemens.com 58. Lyman J. Frost INEEL Mailstop 3805 P.O. Box 1625 Idaho Falls, ID 83415 Phone: 208/526-2941 Fax: 208/526-0876 E-mail: frosl@inel.gov 59. Rodney A Geisbrecht National Energy Technology Laboratory U.S. Department of Energy 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 Phone: 412/386-4870 Fax: 412/386-4604 E-mail: rgeisb@netl.doe.gov Randall S. Gemmen 60. National Energy Technology Laboratory U.S. Department of Energy 3610 Collins Ferry Road Morgantown, WV 26507-0880 Phone[.] 304/285-4536 Fax: 304/285-4403 E-mail: rgemm@netl.doe.gov Tom J. George 61. National Energy Technology Laboratory U.S. Department of Energy 3610 Collins Ferry Road Morgantown, WV 26507-0880 Phone: 304/285-4825 Fax: 304/285-4403 E-mail: tom.george@netl.doe.gov

62. Robert Glass Lawrence Livermore National Laboratory 7000 East Avenue MS L-644 Livermore, CA 94550 Phone: 925/423-7914 Fax. 925/423-7914 E-mail: glass3@llnl.gov 63. Raymond Gorte University of Pennsylvania 311 Towne Building 220 S. 33rd Street Philadelphia, PA 19104 Phone: 215/898-4439 Fax: 215/573-2093 E-mail: gorte@seas.upenn.edu 64. M. James Grieve Delphi Automotive Systems 21 Wenlock Road Fairport, NY 14450 Phone: 716/359-6253 Fax: 716/359-6896 E-mail: m.james.grieve@delphiauto.com 65. Manoj K. Guha American Electric Power Service Corp. *1 Riverside Plaza Columbus, OH 43215-2373 Phone: 614/223-1285 Fax: 614/223-2112 mkguha@aep.com E-mail: 66. Douglas Gyorke National Energy Technology Laboratory U.S. Department of Energy 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 Phone[.] 412/386-6173 Fax: 412/386-4775 E-mail: gyorke@netl.doe.gov 67. Sossina M. Haile California Institute of Technology 1200 E. California Boulevard Mailstop 138-78 Pasadena, CA 91125

Buddy Hartberger 68. U.S. Coast Guard 2100 Second Street, S.W. Washington, DC 20593-0001 Phone: 202/267-0886 Fax: 202/267-2598 E-mail: ahartberger@comdt.uscg.mil Comas Haynes 69. Georgia Tech 514 Ridgecreek Drive Clarkston, GA 30021 Phone: 404/894-1012 Fax: 404/894-8336 E-mail: ch135@prism.gatech.edu 70. Jack Hirschenhofer Parsons Corporation 4 Goldfinch Drive Wyomissing, PA 19610 Phone: 610/777-4036 Fax: 610/855-2384 E-mail: john h hirschenhofer@parsons.com 71. Diane Hooie National Energy Technology Laboratory U.S. Department of Energy 3610 Collins Ferry Road Morgantown, WV 26507-0880 Phone: 304/285-4524 Fax: 304/285-4216 E-mail: dhooie@netl.doe.gov Kevin Huang 72. University of Texas at Austin 26th Street and San Jancinto ETC 9102 Austin, TX 78712-1063 Phone: 512/471-3588 Fax. 512/471-7681 E-mail: kqhuang@mail.utexas.edu 73. Wayne Huebner University of Missouri at Rolla 222 McNutt Hall Rolla, MO 65401 Phone: 573/341-4401 573/341-6934 Fax: E-mail: huebner@umr.edu

Phone:

E-mail:

Fax:

626/395-2958

626/578-0058

smhaile@caltech.edu

74. Zohair Ismail CECOM 10108 Gridley Road Suite 1 Ft. Belvoir, VA 22060 Phone: 703/704-2634 Fax. 703/704-3794 E-mail: zohair-k-ismail@belvoir.army.mil 75. Brian D James Directed Technologies, Inc. 3601 Wilson Blvd. Suite 650 Arlington, VA 22203 Phone: 703/243-3383 Fax: 703/243-2724 E-mail: brian-james@directedtechnologies.com 76. Lisa A. Jarr National Energy Technology Laboratory U.S. Department of Energy 3610 Collins Ferry Road Morgantown, WV 26507-0880 Phone: 304/285-4555 Fax: 304/285-4292 E-mail: lisa.jarr@netl.doe.gov 77. Roddie R. Judkins Oak Ridge National Laboratory 1 Bethel Valley Road Mailstop 6084 Oak Ridge, TN 37831-6084 Phone: 865/574-4572 Fax: 865/574-4357 E-mail: judkinsrr@ornl.gov 78. Michel Jullian OCM Technology, Inc. 2183 Thurston Drive Ottawa, Ontario Canada, K1G 6C9 Phone: 613/736-5665 Fax: 613/736-5525 E-mail: michel.jullian@ocmtech.com 79. Johnny Kalmakoff Sustainable Energy Technology Alberta Place Suite 850 Calgary, Alberta, Canada, T2R 0Y4 Phone: 403/508-7177 Fax. 403/205-2509

kalmakoff@sustainableenergy.com

2333 Springfield Circle Oakville, Ontario, Canada, L6J7P8 Phone: 905/829-8899 905/829-0688 Fax: E-mail[.] kentdsmithj@sprint-com 81. Moe A. Khaleel Pacific Northwest National Laboratory P.O. Box 999 MS K2-18 Richland, WA 99352 Phone: 509/375-2438 Fax: 509/375-6605 E-mail: moe.khalee1@pnl.gov Kevin Krist 82. Gas Research Institute 8600 West Bryn Mawr Ave. Chicago, IL 60631 Phone: 773/399-8211 Fax: 773/399-8170 E-mail: kkrist@gri.org 83. Bill Krusel PACCAR, Inc. 27260 Haggerty Road Suite A-7 Farmington Hills, MI 48331 Phone: 248/553-2347 Fax: 248/553-3821 E-mail: bill.krusel@paccar.com 84. Romesh Kumar Argonne National Laboratory 9700 South Cass Avenue **MS D-205** Argonne, IL 60439-4837 Phone: 630/252-4342 Fax: 630/252-4176 E-mail: kumar@cmt.anl.gov Jerome LaMontagne 85. Brookhaven National Laboratory 12 North Sixth Street Building 526 Upton, NY 11973 Phone: 631/344-2831 Fax: 631/344-2359 E-mail: jerome@bnl.gov

80.

Darrell Kent

OCM Technology, Inc.

E-mail:

86. Benson P. Lee Technology Management, Inc. 9718 Lake Shore Blvd. Cleveland, OH 44108 Phone: 216/541-1000 Fax: 216/541-1000 E-mail: tmi@stratos.net

- 87. John Leeper Southern California Edison 2244 Walnut Grove Avenue Rosemead, CA 91770 Phone: 626/302-8936 Fax: 626/302-8030 E-mail: leeperjd@sce.com
- 88. Werner Lehnert Adam Opel AG 1 PC-81-90 Russelsheim, Germany, D-65423 Phone: 49 6142 765773 Fax: 49 6142 766151 E-mail: werner.lehnert@de.opel.com

89. David Lewis Argonne National Laboratory 9700 South Cass Avenue Building 205 Argonne, IL 60439 Phone: 630/252-4383 Fax: 630/252-5528 E-mail: lewisd@cmt.anl.gov

90. Jason T. Lewis National Energy Technology Laboratory U.S. Department of Energy 3610 Collins Ferry Road Morgantown, WV 26507-0880 Phone: 304/285-4724 Fax: 304/285-4403 E-mail: jason.lewis@netl.doe.gov

91. Craig A. Linne Visteon Corporation 15041 Commerce Drive S. Suite 401 Dearborn, MI 48120 Phone: 313/845-8984 Fax: 313/323-8132 E-mail: clinne@visteon.com

92. Meilin Liu Georgia Tech 778 Atlantic Drive MS-0245 Atlanta, GA 30332-0245 Phone: 404/894-6114 Fax. 404/894-9140 E-mail: meilin.liu@mse.gatech.edu 93. Ronald E. Loehman Sandia National Labs Advanced Materials Lab 1001 University Blvd., SE, Suite 100 Albuquerque, NM 87106 Phone: 505/272-7601 Fax: 505/272-7304 E-mail: loehman@sandia.gov 94. Bob Lorand Science Applications International Corp. 8301 Greensboro Drive Mailstop E-4-6 McLean, VA 22102 703/676-4439 Phone: 703/356-4056 Fax: E-mail: robert.t.lorand@saic.com 95. Howard Lowitt Energetics, Inc. 7164 Columbia Gateway Drive Columbia, MD 21046 Phone: 410/290-0370 x 249 Fax: 410/423-2195 E-mail: hlowitt@energetics.com 96. Bill Luecke NIST 100 Bureau Drive MS 8521 Gaithersburg, MD 20899-8521 Phone: 301/975-5744 Fax: 301/975-5334 E-mail: william.luecke@nist.gov 97. Momtaz N. Mansour ThermoChem, Inc. 6001 Chemical Road Baltimore, MD 21226 Phone: 410/354-9890 x 12 Fax: 410/354-9894 E-mail: mmansour@tchem.net

University of Pittsburgh 3700 O'Hara Street Dept. of Mechanical Engineering Pittsburgh, PA 15261 Phone: 412/624-9602 Fax. 412/624-4846 E-mail: smao@engrng.pitt.edu 99. James A. Marsh Concurrent Technologies Corporation 3610 Collins Ferry Road Morgantown, WV 26505 Phone: 304/285-4064 Fax: 304/285-4403 E-mail: jmarsh@netl.doe.gov 100. Hans Maru FuelCell Energy, Inc. 3 Great Pasture Road Danbury, CT 06813 Phone: 203/825-6006 203/825-6273 Fax: E-mail: hmaru@fce.com 101. Gary J. Mayo Visteon Corporation 15041 Commerce Drive S. Suite 401 Dearborn, MI 48120 Phone: 313/594-2147 Fax: 313/322-9856 E-mail: gmayo@visteon.com 102. Marshall Mazer McDermott/Babcock & Wilcox 1820 N. Fort Myer Drive Suite 804 Arlington, VA 22209 Phone[.] 703/351-6313 Fax: 703/351-6418 E-mail: marshall.mazer@mcdermott.com 103. Don McConnell Pacific Northwest National Laboratory 902 Battelle Boulevard P.O. Box 999 Richland, WA 99352 Phone: 509/372-6060 Fax: 509/372-4774 E-mail: mcconnel@battelle.org

98. Scott X. Mao

104. Timothy McDonald
Pinnacle West Capitol Corp. (APS)
400 North 5th Street
Mailstop 8931
Phoenix, AZ 85004
Phone: 602/250-3032
Fax: 602/250-3872
E-mail: timothy.mcdonald@pinnaclewest.com

105. Tim McIntyre Oak Ridge National Laboratory
1 Bethel Valley Road Oak Ridge, TN 37831 Phone: 865/576-5402 Fax: 865/574-1249 E-mail:

- 106. Gary McVay

 Pacific Northwest National Laboratory
 902 Battelle Blvd.
 P.O. Box 999, MSIN K2-50
 Richland, WA 99352
 Phone: 509/375-3762
 Fax: 509/375-2167
 E-mail: gary@pnl.gov
- 107. G. B. Kirby Meacham Michael A. Cobb & Company 1688 Brookwood Drive Akron, OH 44313-5068 Phone: 330/869-8046 Fax: 330/869-8058 E-mail: cobbcomp@aol.com
- 108. James F. Miller Argonne National Laboratory 9700 South Cass Avenue MS CMT-205 Argonne, IL 60439-4837 Phone: 630/252-4537 Fax: 630/252-9505 E-mail: millerj@cmt.anl.gov
- 109. Carl E. Miller Delphi Automotive Systems 4800 S. Saginaw Street Flint, MI 48501-1360 Phone: 810/257-7402 Fax: 810/257-7781 E-mail:

110. Irven Miller I.B. Miller, Inc. 175 Washington Street Long Branch, NJ 07740 Phone: 732/222-5783 Fax: 732/229-7708 E-mail[.] imiller@flakice.com 111. Nguyen Q. Minh Honeywell 2525 W. 190th Street Mailstop 36-1-93190 Torrance, CA 90504-6099 Phone: 310/512-3515 Fax: 310/512-3432 E-mail: nguyen.minh@honeywell.com 112. Bijoy K. Misra Misra, Inc. 361 Whirlaway Court Wheaton, IL 60187 Phone: 630/690-8570 630/690-9467 Fax: E-mail: bkmisra@ziplink.net 113. Kevin Moore Energetics 2414 Cranberry Square Morgantown, WV 26508 Phone: 304/594-1450 Fax: 304/594-1485 E-mail: kevin.moore@netl.doe.gov 114. Michael Mundschau Eltron Research, Inc. 4600 Nautilus Court South Boulder, CO 80301-3241 Phone: 303/530-0263 x 134 303/530-0264 Fax: E-mail[.] mundschau@eltronresearch.com 115. Jeff O. Neff EG&G Technical Services, Inc. 3604 Collins Ferry Road Suite 200, MS OO4 Morgantown, WV 26505-2353 Phone: 304/599-5941 X 111 Fax: 304/599-8904 E-mail: jneff@svcmgt.egginc.com

116. John A. Olenick Advanced Refractory Technologies, Inc. 699 Hertel Avenue Buffalo, NY 14207 Phone: 716/875-9543 x 202 Fax: E-mail: jolenick@art-inc.com 117. Larry Osgood Propane Education and Research Council 17560 Shiloh Pines Drive Monument, CO 80132 719/487-0080 Phone: Fax. 719/487-8802 E-mail: ldogood1@aol.com 118. David E. Parekh Georgia Institute of Technology 7220 Richardson Road Smyrna, GA 30080 Phone: 770/528-7826 Fax: 770/528-7019 E-mail: david.parekh@gtri.gatech.edu 119. Joseph F. Pierre Siemens Westinghouse Power Corp. 1310 Beulah Road Pittsburgh, PA 15235 Phone: 412/256-5313 412/256-7233 Fax: E-mail: joseph.pierre@swpc.siemens.com 120. John Plunkett EG&G Technical Services, Inc. 3610 Collins Ferry Road P.O. Box 880, MS MO2 Morgantown, WV 26507-0880 Phone: 304/285-4605 Fax: 304/285-4488 E-mail: jplunk@netl.doe.gov 121. Michael T. Prinkey Fluent, Inc. 3647 Collins Ferry Road Suite A Morgantown, WV 26505 Phone[.] 304/598-3770 Fax: 304/598-7185 E-mail: mtp@fluent.com 122. James Ralph Argonne National Laboratory 9700 South Cass Avenue Argonne, IL 60439-4837 Phone: 630/252-4519 Fax: 630/252-4176 E-mail: ralph@cmt.anl.gov

123. Udaya Rao U.S. Department of Energy National Energy Technology Laboratory P.O. Box 10940 Pittsburgh, PA 15236-0940 Phone: 412/386-4743 Fax. 412/386-4604 E-mail: rao@netl.doe.gov 124. Dan Rastler EPRI Solutions. Inc. 3412 Hillview Avenue P.O. Box 10414 Palo Alto, CA 94304-1395 Phone: 650/855-2521 Fax: 650/855-8759 E-mail: drastler@epri.com 125. Carl Reiser International Fuel Cells 195 Governors Highway South Windsor, CT 06074 Phone: 860/727-2368 Fax: 860/727-2575 E-mail: reiserc@ifc.utc.com 126. Robert J. Remick Institute of Gas Technology 1700 S. Mount Prospect Road Des Plaines, IL 60018 Phone: 847/768-0560 Fax: 847/768-0916 E-mail: remick@igt.org 127. William A. Rogers Fluent, Inc. 3647 Collins Ferry Road Suite A Morgantown, WV 26505 Phone[.] 304/598-3770 Fax: 304/598-7185 E-mail: war@fluent.com 128. Rhett Ross Fuel Cells 2000 1625 K Street, N.W. Suite 725 Washington, DC 20006 Phone: 202/785-4222

129. Richard Rozance Car Sound Exhaust Systems, Inc. 22961 Arroyo Vista Rancho Santa Margarita, CA 92688 Phone: 949/858-5900 Fax: 949/858-3600 E-mail: 130. George Rudins U.S. Department of Energy 1000 Independence Ave., S.W. Washington, DC 20585 Phone: 202/586-1650 202/586-4085 Fax: E-mail: george.rudins@hq.doe.gov 131. Steve Satzberg Office of Naval Research 800 North Quincy Street Arlington, VA 22217-5660 Phone: 703/696-0946 Fax: 703/696-0308 E-mail: satzbes@onr.navy. mil 132. Chris Schilling Ames Laboratory Iowa State University 3161 Gilman Ames, IA 50011 Phone: 515/294-9465 Fax: 515/294-8727 E-mail: schillin@iastate.edu 133. William P. Schweizer McDermott Technology, Inc. 1562 Beeson Street Alliance, OH 44601 Phone: 330/829-7507 Fax: 330/829-7293 E-mail[.] william.p.schweizer@mcdermott.com 134. Mohindar Seehra West Virginia University Physics Department Hodges Hall Morgantown, WV 26506-6315 Phone: 304/293-3422 x 1473 Fax: 304/293-5732 E-mail: mseehra@wvu.edu

Fax:

E-mail:

202/785-4313

rross@fuelcells.org

135. Rajat K. Sen Sentech, Inc. 4733 Bethesda Ave. Suite 608 Bethesda, MD 20814 Phone: 301/654-7224 Fax. 301/654-7832 E-mail: rsen@sentech.org 136. Tim Sherwood Philip Morris USA Philip Morris R&D P.O. Box 26583 Richmond, VA 23261 Phone: 804/274-3083 Fax: 804/274-4778 E-mail: tim.s.sherwood@pmusa.com 137. Dinesh K. Shetty Materials & Systems Research, Inc. 5395 West 700 South Salt Lake City, UT 84104 Phone: 801/530-4987 Fax: 801/530-4820 E-mail: dshetty@materialsys.com 138. Eric Simpkins FuelCell Energy, Inc. 3 Great Pasture Road Danbury, CT 06813 Phone: 202/737-1372 Fax: 202/737-7337 E-mail: ercc@erols.com 139. Ron Sims Ford Motor Company 2101 Village Road, MS 1170 P.O. Box 2053 Dearborn, MI 48121-2053 Phone[.] 313/594-0879 Fax: 313/248-5167 E-mail: rsims1@ford.com 140. Prabhakar Singh Pacific Northwest National Laboratory 902 Battelle Blvd. P.O. Box 999, MSIN K2-50 Richland, WA 99352 Phone: 509/375-5945 Fax: 509/375-2167

Pacific Northwest National Laboratory Mailstop K2-18 P.O. Box 999 Richland, WA 99352 Phone: 509/375-6738 Fax. 509/375-6605 E-mail: singhal@pnl.gov 142. Harry Skruch NAVSEA O5R 2531 Jefferson Davis Highway MS 05R27 Arlington, VA 22242-5160 Phone: 703/602-0706 x 412 Fax: 703/602-0488 E-mail: skruchhj@navsea.navy.mil 143. Jack Solomon Praxair Inc. 777 Old Saw Mill River Road Tarrytown, NY 10591-6714 Phone: 914/345-6442 Fax: 914/345-6486 E-mail: jack-solomon@praxair.com 144. Rengaswamy Srinivasan The Johns Hopkins University 11100 Johns Hopkins Road Laurel, MD 20723-6099 Phone[.] 240/228-6378 Fax: 240/228-6904 E-mail: sriniri@jhuapl.edu 145. Jeff Stevenson Pacific Northwest National Laboratory Mailstop K2-44 P.O. Box 999 Richland, WA 99352 Phone: 509/372-4697 Fax: 509/375-2186 E-mail: jeff.stevenson@pnl.gov 146. Joseph P. Strakey National Energy Technology Laboratory U.S. Department of Energy 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 Phone: 412/386-6124 Fax: 412/386-4822 E-mail: joseph.starkey@netl.doe.gov

141. Subhash C. Singhal

E-mail:

prabhakar.singh.pnl.gov

147. Larry D. Strickland National Energy Technology Laboratory U.S. Department of Energy 3610 Collins Ferry Road Morgantown, WV 26507-0880 Phone: 304/285-4494 Fax. 304/285-4403 E-mail: lstric@netl.doe.gov 148. Wayne A. Surdoval National Energy Technology Laboratory U. S. Department of Energy 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 Phone: 412/386-6002 Fax: 412/386-4775 E-mail: surdoval@netl.doe.gov 149. Scott L. Swartz Nextech Materials, Inc. 720-I Lakeview Plaza Blvd. Worthington, OH 43085-4733 Phone: 614/842-6606 Fax: 614/842-6607 E-mail: swartz@nextechmaterials.com 150. Walter G Taschek CECOM 10108 Gridley Road Suite 1 Ft. Belvoir, VA 22060 Phone: 703/704-1997 Fax: 703/704-3794 wtaschek@hotmail.com E-mail: 151. W. Peter Teagan Arthur D. Little, Inc. 20 Acorn Park Cambridge, MA 02140 Phone[.] 617/498-6054 Fax: 617/498-7206 E-mail: teagan.w@adlittle.com 152. Tim Theiss **UT-Battelle** 1 Bear Creek Road Mailstop 8088 Oak Ridge, TN 37831 Phone: 865/574-1824 Fax: 865/241-1747 theisstj@ornl.gov E-mail:

153. Mike Thompson Pacific Northwest National Laboratory P.O. Box 999 Mailstop K7-50 Richland, WA 99352 Phone: 509/375-6471 Fax. 509/375-4481 E-mail: mike.thompson@pnl.gov 154. Edward Torrero National Rural Electric Cooperative Association 4301 Wilson Blvd. SS 9-204 Arlington, VA 22203 Phone: 703/907-5624 Fax: 703/907-5518 E-mail: ed.torrero@nreca.org 155. Matthew Tracy Air Force Research Laboratory 2698 G Street Wright Patterson AFB, OH 45433-7604 Phone: 937/255-8360 Fax: 937/255-6555 E-mail: matthew.tracy@wpafb.af.mil 156. Bruce R. Utz National Energy Technology Laboratory U.S. Department of Energy 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 Phone: 412/386-5706 Fax: 412/386-5917 E-mail: bruce-utz@netl.doe.gov 157. Thomas I. Valdez Jet Propulsion Laboratory 4800 Oak Grove Drive Mailstop 277-215 Pasadena, CA 91109 Phone: 818/354-3797 Fax: 818/393-6951 E-mail: thomas.i.valdez@jpl.nasa.gov 158. Lawrence E. Van Bibber SAIC P.O. Box 18689 Pittsburgh, PA 15236-0689 Phone: 412/386-4853 Fax: 412/386-4516 E-mail: vanbibb@netl.doe.gov

159. Jud Virden Pacific Northwest National Lab 902 Battelle Blvd. P.O. Box 999, MSIN K2-44 Richland, WA 99352 Phone: 509/375-6512 509/375-2186 Fax. E-mail: jud.virden@pnl.gov 160. Anil V. Virkar University of Utah Materials & Systems Research, Inc. 122 S. Central Campus Drive Salt Lake City, UT 84112 Phone: 801/581-5396 Fax: 801/581-4816 E-mail: anil.virkar@m.cc.utah.edu 161. Steven J. Visco Lawrence Berkeley National Laboratory Materials Science Division MS 62-247 Berkeley, CA 94720 Phone: 510/486-5821 Fax: 510/486-4881 E-mail: sjvisco@lbl.gov 162. Conghua Wang University of Pennsylvania 3231 Walnut Street Philadelphia, PA 19104 Phone: 215/898-8902 Fax: 215/573-2128 cwang@lrsm.upenn.edu E-mail: 163. David Weiss Industrial Center 400 N. Capitol Street Suite 400 Washington, DC 20001 Phone: 202/824-7153 Fax: E-mail: dweiss@industrialcenter.org 164. Wendell R. Welch USAF AEFB/DOC 360 Gunfighter Avenue Suite 1 Mountain Home AFB, ID 83648 Phone: 208/828-3512 Fax. 208/828-3525 E-mail: wendell.welch@mountainhome.af.mil 165. Mark C. Williams National Energy Technology Laboratory U.S. Department of Energy 3610 Collins Ferry Road Morgantown, WV 26507-0880 Phone: 304/285-4747 304/285-4216 Fax. E-mail: mark.williams@netl.doe.gov 166. Dennis Witmer University of Alaska - Fairbanks 525 Duckering Buidling Fairbanks, AK 99712 907/474-7082 Phone: Fax: 907/474-6141 E-mail: ffdew@uaf.edu 167. Joseph A. Woerner Analysis & Technology 301 Green Lee Road Annapolis, MD 21402 Phone: 410/349-2035 410/293-9690 Fax: E-mail: jwoerner@vrc.com 168. Richard Woods Hydrogen Burner Technology, Inc. 3925 Vernon Street Long Beach, CA 90815 Phone: 562/597-2442 Fax: 562/597-8780 E-mail: rwoods@hydrogenburner.com 169. Wayne L. Worrell University of Pennsylvania 3231 Walnut Street Philadelphia, PA 19104-6272 Phone: 215/898-8592 Fax: 215/573-2128 E-mail[.] worrell@seas.upenn.edu 170. John Wozniak The Johns Hopkins University Applied Physics Laboratory 11100 Johns Hopkins Road Laurel, MD 20723-6099 Phone: 240/228-5744 240/228-5512 Fax. E-mail: john.wozniak@jhuapl.edu 171. John Yamanis Honeywell 101 Columbia Road Morristown, NJ 07962-1021 Phone: 973/455-5052

973/455-3008

john.yamanis@honeywell.com

Fax: E-mail: 172. Edwin R. Yarbrough Honeywell
1001 Pennsylvania Ave., N.W. Suite 700 South Washington, DC 20004 Phone: 202/662-2647 Fax: 202/662-2661 E-mail: ed.yarbrough@honeywell.com

173. Charles M. Zeh

National Energy Technology Laboratory U.S. Department of Energy 3610 Collins Ferry Road Morgantown, WV 26507-0880 Phone: 304/285-4265 Fax: 304/285-4469 E-mail: charles.zeh@netl.doe.gov