

Cathode/Interconnect Interactions

Michael Krumpelt, T.A. Cruse, M. Hash, Chemical Engineering Division

Argonne National Laboratory

A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago

Introduction

Chromium produces an irreversible decline in SOFC performance.

Interconnect Alloy

Scale

$$2Cr + 1.5O_2 \rightarrow Cr_2O_3$$

$$Cr_2O_3 + O_{2(g)} + H_2O_{(g)} \rightarrow 2CrO_2(OH)_{2(g)}$$

Electronic Conducting Cathode

Mixed Conducting Cathode

Program Objectives

- Examine chromium poisoning in full cell tests
 - Different Cathodes
 - (La,Sr)MnO₃, (La,Sr)FeO₃ and (La,Sr)_{1-x}FeO₃
 - Different Alloys
 - 430 SS, E-BRITE and Crofer 22APU
- Evaluate chromium release rates for oxides
 - Cr_2O_3
 - LaCrO₃
 - MnCr₂O₄
- Examine the effects of chromium in the cathode

Full Cell Test Procedure

- Anode supported cells, with various cathodes, mounted into test fixture (purchased from InDec and NexTech)
- Cell operated at 0.7V, current measured
- Test stopped when current reduced to ½ initial value

LSM with Crofer22APU

Temperature: 800°C

Run Time: 194 hours

Flow rate: 100 ml/min

Cathode gas: Air with room temp. humidification

LSF with Crofer22APU

Temperature: 800°C

Run Time: 48 hours

Flow rate: 100 ml/min

Cathode gas: Air with room temp. humidification

LSF_{sub} with Crofer22APU

Temperature: 800°C

Run Time: 58 hours

Flow rate: 100 ml/min

Cathode gas: Air with room temp. humidification

Anode gas: Hydrogen with room temp. humidification Cell Source: NexTech

Summary of Crofer Full Cell Tests

Cr content highest at cathode/electrolyte interface

- Cr throughout the LSF and LSF_{sub}
- Cr content correlates with oxygen ion vacancy concentration
 - LSM < LSF < LSF_{sub}

$$2CrO_2(OH)_{2(g)} + 6e^- + 3V_o" \rightarrow Cr_2O_3 + 3O_o^x + 2H_2O$$

TGA Objectives

- Establish steady state reaction conditions similar to what may be seen in a fuel cell
- Measure the rate of material lost from various possible sources of chromium
- Compare results with the amount of chromium observed in the cathodes

Based on Thermodynamics

- Predominate volatile species
 - Air, dry: CrO₃
 - Air, with H₂O: CrO₂(OH)₂
- At 800°C: CrO₂(OH)₂~100x greater than CrO₃
- At 800°C LaCrO₃ & MnCr₂O₄ ~100x more stable than Cr₂O₃

Effects of Water on Cr₂O₃ at 800°C

Air-3% H₂O, 800°C

Air-10% H₂O, 800°C

*Air-25% H*₂*O, 800°C*

Correlation of TGA and Cell Experiments

- Projected Cr release based on TGA results for Cr₂O₃ scale after 200 hrs
 - ~ 5000 μg Cr volatilized
- Average Cr content of cathodes based on SEM/EDS analysis
 - LSM $\sim 150 \mu g Cr$
 - LSF ~ 800 μg Cr
 - LSF_{sub} \sim 1200 μ g Cr

Summary of TGA

Increasing humidity and temperature, increased volatilization

- Mass loss rate
 Cr₂O₃> LaCrO₃ > MnCr₂O₄
- Continue examining
 - variations in composition
 - temperature
 - humidity

Chromium Substitution Objectives

- Synthesize cathodes with Cr in structure
- Determine the effect of substituted Cr on cathode electrical resistance

Cr Substitution Experimental Procedure

- Materials prepared by glycine nitrate process
 - Cr levels of 0,1, 5 and 10 mol% relative to B-site
- Powders calcined, milled and made into an ink
- Ink placed on 8-YSZ tab and sintered
- AC impedance measured in this ½ cell configuration
- X-ray Diffraction

Additions of Cr to LSF

Conclusions

 While new alloys have reduced Cr poisoning, further development is still needed

 Cr₂O₃, LaCrO₃ and MnCr₂O₄ show mass loss that could result in "Cr poisoning"

Chromium in the lattice of the cathode degrades performance

Acknowledgements

- Work supported by the U.S. Department of Energy, SECA, under Contract W-31-109-Eng-38.
- Program Manager: Wayne Surdoval
- Project Manager: Lane Wilson

The submitted manuscript has been created by the University of Chicago as Operator of Argonne National Laboratory ("Argonne") under Contract No. W-31-109-ENG-38 with the U.S. Department of Energy. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

