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Introduction

DOE NETL/SECA “Low Cost Fuel Cell Alliance” began in
2000 and originally involved 11 organizations

OSU: characterization as applied to NexTech
tapes/laminates

An avoidance of standard MSE techniques has driven us
to examine ‘pure’ manufacturing issues

Recently acquired optical profilometer
Our “home-built” laser dilatometer
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Introduction

Objective: demonstrate that these techniques can to
serve as new tools to examine old problems

Establish advanced characterization tools for process
diagnostics during manufacture

More knowledge about curvature allows reduction of
the number of manufacturing steps

Examples: manufacturing process development

Examples: demonstrate value w/o revealing too much;
not all samples are NexTech's



Optical Profilometry

Uses interference of filtered white light reflected from
a surface as imaged by a CCD array

Not contact-based (stylus)
Provides information not visible to the naked eye

Lower resolution than SEM; compatible with specific
manufacturing problems

Provides microstructural details non-destructively




B&A Sintering: Standard Profilometry Data
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One-way curvature, convex/concave



Permanent Curvature Reduction, Anode Support
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B&A: 1400°C Laminate Before Reduction (R, =292 um)
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B&A: After Reduction (R, = 375 ym)
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B&A Reduction: Significance

How does NiO reduction affect residual stress in the
electrolyte layer?

Gradients in reduction-oxidation and the electrolyte layer?
Effects of repeated redox on the electrolyte layer?

Can degradation caused by redox cycling be minimized by
optimizing cell fabrication?




Lr Edge Curvature Sample #1




k Edge Curvature #2
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Edge Curvature #3




Edge Curvature #4
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Edge Curvature #5
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= Relevant to sealing (ceramic-ceramic, ceramic-metal) that
must take place against these surfaces

= |C connections also affected
= Sealing stresses will be unevenly applied
= Why are all five are unique?



Curvature-stress interactions: examining
compressive failure of the electrolyte layer

pm__Failure of
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layer only
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Curvature and Stress

Stresses evolve locally as cells cool down

Cracking of electrolyte layers controlled by localized high
spots and low spots that deviate from perfecitly flat
geometries

Out-of-plane stresses develop in real, as-fabricated cells
Does sealing increase these stresses?

Operating stresses can exacerbate pre-existing cracks;
redox stresses are of concern as operational temperatures
decrease

NexTech solved this particular problem using data from our
laser dilatometer



Summary: Using OP to Examine Curvature

= Large scale curvature; pass/fail criterion

= B&A various manufacturing operations - non-
destructive

= B&A operation - non-destructive

= Defects/microcracking in the YSZ film can be
identified for pass/fail or subsequent SEM

= Small vs. large scale curvature and failure mechanics

= Adaptive meshing of profilometry data for FEA
approaches



Larger Questions

How can the fabrication processes and/or thermal cycles be
modified to reduce curvature?

When exactly, does curvature evolve in anode-supported cells?
= Green tape processing?
= Precalcination?
= Burnout?
« Co-sintering?
« Sealing?

We have observed that each of these steps contributes to the
final curvature (and thus the final localized stress state)



Laser Dilatometry
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Unlocking the “Black Box” of Thermal Processing

Once the furnace door is closed all dimensional information
about the sample ceases; makes problem solving
difficult/impossible?

LD Non-contact - can monitor tape through all stages of
heating and when liquid phases are present

Non-contact - can monitor seal materials when liquid phases
are present

Accuracy - +/-0.5 ym; about the same as standard LVDT-
based dilatometry

Accuracy - does not average data (i.e., standard dilatometry)
and is standardless



Vertical traverse of a 1.5” wide, 6-layer laminate@898°C
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3D laminate surface data collected at 1304°C
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Color coded to match optical profilometry scale



From Cells to Stacks? - Experimental Setup
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Dimensional Behavior of Seal vs. T and Cycle
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Dimensions (xm)

Dimensional Behavior of ‘Cell’ vs. T
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Acoustic Emission - Cracking Under Constraint
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Conclusions

The field needs additional experimental techniques

Non-contact profilometry: accept/reject criterion for
fuel cell manufacturing?

B&A testing of manufacturing processes

Laser dilatometry can be used to open up the “black
box” and demystify thermal treatment processes;
possible NexTech business interest

Laser dilatometry can render both single cells and

stacks in three dimensions in situ



Applicabllity

= Curvature: everyone’s got it; what are the contributing
factors?

= How does curvature influence durability and
response to operational stresses?

= Laser dilatometry can be used to provide new
information regarding not only cells but also stacks -
cells, ceramic-ceramic seals, ceramic-metal seals



Future work

Continue to demonstrate that optical profilometry and
laser dilatometry are valuable tools for manufacturing

Evaluate curvature evolution in various steps during
the fabrication of anode-supported cells (B&A)

Determine effects of anode reduction and redox
cycling on planar cells/the electrolyte layer (B&A);
responsible for slow degradation in performance?

Investigate Raman spectroscopy as a useful tool for
characterizing variations in stress within the
electrolyte layer and connections to curvature
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