

Ceramic Interconnects / Coatings

SECA Core Technology Program SOFC Interconnection (IC) Technology Meeting

Argonne National Laboratory, Chicago IL July 28-29, 2004

Interconnect Requirements

- Thermal expansion match with SOFC components
- Stability over operating pO₂ range (0.2 to 10⁻¹⁸ atm)
- High electronic conductivity in air and fuel
- Gas impermeability
- Process compatibility
- Mechanical integrity
- Low material and fabrication costs
- Negligible non-electronic migration

Interconnect Materials

- Two classes of interconnect materials
 - > Ceramic
 - o suitable for high temp. operation (900 1000 C)
 - Electronic conductivity a strong function of temp.
 - > Metallic
 - o suitable for 650 800 C operation
 - o Oxidation is a major problem at higher temp.

Introduction and Background

Typical Compositions of interest

- La(Sr)MnO₃ Cathode
- La(Sr)CoO₃ Cathode
- La(Sr)CrO₃ Interconnect
- La(Sr)GaO₃- Electrolyte
 - Good Conductivity (ionic, electronic)
 - OXYGEN NONSTOICHIOMETRY)
 - Good Catalytic Properties for Oxygen Exchange
 - CTE flexibility (8.5 18.0 ppm / °C)
 - Chemical Stability to Severe Conditions (LSCr)

July 28 - 29, 2004

Interconnect Requirements

- Thermal Expansion Match with SOFC components
- Stability over operating pO₂ range
- High electronic conductivity in air and fuel

LaCrO₃ meets the necessary electrochemical properties

- Gas Impermeability
- Process Compatibility
- Mechanical Integrity

Challenges & Options in Fabrication

Difficult to sinter due to

- > High Temperature requirements typically ~ 1700 C
- > control of CrO₃ volatilization Air Sintering is the preferred option
- > capital and operational cost

Options

- Liquid Phase Sintering through addition of low melting eutectic
- > Transient liquid phase sintering in the chromite system

Lower Temperature Air Sintering

- Addition of Ca and Co promotes liquid phase sintering
- Lower Sintering Temperature ~ 1450°C
- High Conductivity > 30 S/cm compared 10 S/cm for Sr doped LCr

Sintering Characteristics of LaCrO₃

Evaluation of Interconnect Compositions

- Thermal Expansion Behavior
- Stability in Fuel Atmosphere
- Mechanical Properties

Thermal Expansion Behavior

Stability in Fuel Atmosphere Oxygen Non-stoichiometry

Stability in Fuel Atmosphere Conductivity

Mechanical Properties Fracture Strength of

La_{.89}Ca_{.1}Cr_{.9}Co_{.1}O₃ in Fuel

Mechanical Properties
Fracture Strength of La 83 Sr 16 CrO3

in Fue

Comparison of compositions

• LCCr

- > Low sintering temp
- > High conductivity in air
- > Poor stability in fuel
- > Low mech. Properties

• LSCr

> Better stability in fuel

LMgCr

- Best stability
- > Low conductivity

Need to compare ionic transport

Symptoms of Ionic Leakage

- Low OCV
- Low Fuel Utilization

Prior Measurements:

• WE: Differential pO₂ Mg doped <10 μA/cm²

gas Analysis

• Tokyo Gas: Conductivity Sr, Ca doped 10-300 mA/cm²

Relaxation

• NIMCR: Limiting Current Ca doped 1 mA/ cm²

• Ceramatec: In-line Sensor Sr doped 50 mA/ cm²

Ionic Leakage Modeling*

- 3D stack model thermal, electrochemical, electrical
- Input data: Tokyo Gas (Yasuda et al.)
- a) La_{1-y}Ca_yCrO₃

$$j = \frac{1152 \text{ (-logPo}_2\text{-}12)}{L} \exp(18.72 \text{ Y}_{Ca} - 16000/\text{T})$$

b)
$$La_{1-y}Sr_yCrO_3$$

 $j = \frac{2240 \text{ (-logPo}_2-12)}{L} \exp(16.1 \text{ Y}_{Sr} - 21000/\text{T})$

Geometry Consideration

Geometry 1

Thickness(t): 0.36 mm

Channel Depth(d): 0.71 mm

Channel Width(w): 1.7 mm

Geometry 2

Thickness(t): 0.86 mm

Channel Depth(d): 0.84 mm

Channel Width(w): 1.7 mm

Effects of Composition on Ionic Leak

Geometry 1 Inlet Temp. 1125K

Ca doping shows high leakage current

20

Effects of Geometry: OCV and Leakage Current

 $La_{0.8}Sr_{0.2}CrO_3$

Inlet Temp: 1125K

Geometry 2 exhibits lower leakage Geometry 1: Two solutions

Effects of Inlet Temperature: OCV

- OCV decreases with increasing temp
- OCV of geometry 2 is independent of Dp(air)

Effects of Inlet Temperature:

Leakage Current

Geometry 1 La_{0.8}Sr_{0.2}CrO₃ Geometry 2

- Leakage current increases with increasing temp.
- Geometry 2 is insensitive to air pressure

Measurement Technique

- Direct measurement of ionic current is cumbersome
- Need an indirect measurement technique
 - > Oxygen loss from the lattice causes lattice expansion

Lattice Expansion in Fuel

Chromite Chromite

Composition	Conductivity in Air S/cm	Conductivity in Fuel S/cm	Thermal Expansion to 1000°C ppm/°	CCE at 1000°C in 3% H ₂ - Argon
La _{.83} Sr _{.13} Ca _{.03} CrO ₃	15 - 25	2 - 6	10.1	0.135%
La _{.83} Sr _{.16} Cr _{.98} Fe _{.02} O ₃	~ 15	<1	10.4	0.088%
$La_{.99}Mg_{.1}Cr_{.9}O_3$	8 - 10	1 - 2	8.9	0.05%
La _{.99} Mg _{.2} Cr _{.8} O ₃	4.44	0.45	9.5	0.077%
La _{.99} Mg _{.1} Cr _{.85} Fe _{.05} O ₃	5.86	1.01	9.23	0.035%
La _{.99} Mg _{.1} Cr _{.8} Fe _{.1} O ₃	4.02	0.61	9.32	0.044%
La _{.99} Mg _{.1} Cr _{.80} Ti _{.10} O ₃	0.62	0.56	9.02	0.025%
La _{.99} Mg _{.1} Cr _{.85} Al _{.05} O ₃	5.33	0.73	9.40	0.050%
La _{.99} Mg _{.1} Cr _{.8} Al _{.10} O ₃	8.33	0.86	9.90	0.065%
La _{.99} Mg _{.1} Cr _{.6} Al _{.3} O ₃	3.85	0.101	10.4	0.07%
La _{.63} Gd _{.2} Sr _{.16} CrO ₃	22.4	3.99 dv 28 - 20 2004	9.37	0.14%

Fuel Induced Warpage

Effect of fuel pO2 on OCV

Ceramic Interconnect Stack Test

28

Summary - Ceramic ICs

- Ionic leakage of chromite interconnects must be considered in the selection of material composition
- Global optimization of properties necessary
- Stack endurance demonstrated using this approach
- Materials and fabrication costs need to be addressed

Metal Interconnects

Additional Requirements

- > High temperature corrosion resistance
- > Scale conductivity
- > Scale adhesion
- Stability against electrode/bond layer (poisoning effect)
- > Thermal cycle capability

Approach

- Controlled growth of conductive scale to achieve
 - > Electronic conductivity in scale
 - > Low cation (metal) and anion (oxygen) diffusivity
 - > Good adhesion ('native' scale)

Approach

- Alloy Selection (Fe-Cr based ferritic SS)
 - > CTE Match, Conductive scale (chromia former)
 - Choice of minor alloying elements
 - > < 30% Cr to avoid brittle sigma phase formation
 - Slow cooling to be avoided below 650 C
 - $_{\rm o}$ > 12% for Cr₂O₃ formation

Surface Treatment & Oxidation

- > Growth of selective oxide scale
 - > Control P, T, Xi and t

Scale Resistance in Air (coupon couples)

IC Workshop July 28 - 29, 2004 33

Scale Resistance in H₂/H₂O

Scale Morphology

Stack Evaluation (SBIR Project)

- Sr,Cr rich
- A treatment process with low resistance in coupon tests evaluated (screen printed contact layer)
- Post-test: Sr-Cr rich phase on La(Sr)CoO₃ cathode

Phase II Evaluations

- Approaches to surface treatment optimization
 - > Modify intrinsic scale
 - surface treatment and thermal process
 - Objective: Limit scale growth
 - > Apply extrinsic layer
 - low Cr activity composition (~LaCrO₃)
 - o Objective: Limit Cr evaporation
 - Combine the two layers
 - o graded composition

TGA

- 50C940: oxide scale modification
- MI2: Graded coating

Elemental Map: Graded coating Post-TGA

Dual atmosphere couples

1x1 cm coupon on a larger (3.5x3.5 cm) blank Identical treatment on mating surfaces Contact layer: cobaltite

LaCrO₃ - Dual atmosphere

41

Graded Coating: Dual atmosphere

LaCrO₃ layer

200 mA/cm², ~350 hrs 140 milliohm.cm²

air

- Thick scale
- Poor adhesion

Thin scale Scale loss?

Thick scale under contact layer Sr-Cr rich interface

July 20 - 29, 2004

Graded coating - dual atm.

Summary - Metal IC

- New test arrangement
 - > Allows resistance measurement in dual atm. exposure
 - > Allows continuous load
- Graded coating provides low resistance <u>and</u> thinner oxide scale in initial tests
- Additional work planned
 - > Effect of coating variations
 - > Effect of current density
- Stack test validation in parallel programs

Acknowledgement

- GRI
- Ceramatec
- Norcell
- SOFCo
- DOE SECA CTP