Alloy Development

James M. Rakowski ATI Allegheny Ludlum An Allegheny Technologies Company

SECA Core Technology Program SOFC Interconnection Technology Workshop Argonne National Laboratory July 28, 2004

Introduction

- Iron and nickel-base alloy design and development is a relatively mature science
- Helpful tools exist to aid in alloy development
- Transition from laboratory to practice is critical, complex, and often challenging

Overview

- Introduction to ATI Allegheny Ludlum and Allegheny Technologies
- Alloy design methodology and tools
- Alloy design for oxidation resistance
- Obstacles in transition from laboratory to practice
- Examples of ALC alloy development

Allegheny Technologies

Materials	Stainless steel, Ni-base alloys, Ti (CP and alloy), Co-base alloys, Zr, Hf, WC, +++				
Product Forms	Sheet, Strip, Plate, Billet, Bar, Rod, Castings, Forgings, and Cutting Tools				
Sales Distribution	US 77 Europe 12	% %			
Primary Markets (2003 annual report)	Aerospace Automotive Power Gen	18% 12% 11%	CPI / O&G Appliance Cutting Tools	10% 10% 10%	
ATI Operating Companies	Allegheny Ludlum, Allvac, Wah Chang, Metalworking Products, Portland Forge, Casting Service				
ATI Joint Ventures	STAL, UNITI				

ATI Allegheny Ludlum Products

Stainless Steels	and Specialty Alloys			
Austenitic (Fe-Cr-Ni)	Ferritic (Fe-Cr)			
Type 201L	Types 409, 409ALMZ™, 439, 444			
Types 301, 304, 316, 317, 321, 347	AL453™, E-BRITE [®] , AL 29-4C [®] alloys			
Types 309S, 310S	ALFA™ I, II alloys (FeCrAl)			
AL904L [™] , AL-6XN [®] , AL4565 [™] alloys				
Duplex (Fe-Cr-Ni)	Precipitation-Hardening (Fe-Cr-Ni)			
AL2003™, AL2205™, AL255™ alloys	AL286™ alloy			
	AL13-8™, AL15-5™, AL15-7™, AL17-4™,			
	AL17-7™ alloys			
	AM350™, AM355™ alloys			
Specialty	Titanium			
Grain oriented silicon steels	CP grades 1-4			
Controlled magnetic property alloys	Grades 5 (6-4) and 23 (6-4 ELI)			
Controlled CTE (AL36 [™] , AL42 [™] alloys)	Grades 7, 11, 16, 18 (Pd-bearing)			
Armor plate (K12 [®] Armor Plate)				
Tool Steels				
Nickel-Base Alloys				
Heat-Resistant Grades	Corrosion-Resistant Grades			
AL800 [™] /AL800H [™] , AL825 [™] , AL600 [™] ,	AL22™, AL276™, ALLCOR [®] ,			
AL601™ alloys	AL400™ alloys			
ALTEMP [®] 625, ALTEMP [®] 718,	-			
ALTEMP [®] HX, ALTEMP [®] 263 alloys,				
X-750 alloy	ATI Alleghe			

[™] Trademarks of ATI Properties, Inc. ® Registered Trademarks of ATI Properties, Inc.

ATI Allegheny Ludlum Technical Center

Technical Center

Functions

- Stainless Steel, Nickel and Titanium Alloy Development
- Product Improvement
- Process Improvement
- Failure Analysis
- Welding Process Development
- Corrosion Testing
- Oxidation Testing
- Mechanical Testing (non-production)

Facilities

- •Melt Shop (50 lb VIM)
- Process Lab
 (4 Delling Mille Forge Proce Furgeses)
 - (4 Rolling Mills, Forge Press, Furnaces)
- Metallography Lab (Sample Preparation, Microscopes)
- Scanning Electron Microscope
- Scanning Auger Microprobe
- Corrosion Lab
- Oxidation Lab
- •Mechanical Behavior Lab
- •Welding Lab
- Annealing Simulation (Gleeble) Lab

Technical Center

Technical Center

Alloy Design and Development

- Development of new/unique alloys is not as common as in the past
- Most projects involve modifying existing alloys for a specific need or market
 - Performance improvement
 - Cost reduction
 - Process enhancement
- Well-established methods and tools exist to aid in alloy design

- Traditional methods for designing heatresistant alloys involve the concept of selective, protective oxidation
 - Useful protective oxides are Cr_2O_3 , Al_2O_3 , SiO_2
 - Choice depends on application
 - Temperature
 - Environment

- Required operating lifetime
- Cost
- Strength requirements
- Incorporate sufficient amount to form and maintain an external oxide scale
- Most wrought heat-resistant alloys rely on chromium oxide

- Secondary alloying effects can be utilized to increase oxidation resistance
 - Add an element which exhibits intermediate oxide stability (e.g. FeCrAl alloys)
 - Add rare earth elements to increase adhesion, reduce growth rate
 - Some oxides can be doped, which alters the defect structure and growth rate

- Mitigate unwanted alloying effects
 - Phase stability issues
 - TCP phases
 - Laves
 - Ferrite-austenite balance (stainless steels)
 - Rapid precipitation of strengthening phases
 - Hot working
 - Coiling
 - Rare earth over-doping
 - Excessive oxidation
 - Workability problems

- Protective oxides typified by...
 - Compact
 - Adherent
 - Slow-growing
 - Low concentration of charged electronic / ionic defects
- SECA goals may require non-traditional design concepts
 - Protective oxides generally poor electrical conductors
 - Chromium oxide proven to be volatile in the presence of water vapor to levels damaging to SOFC components

- Extensive theoretical work exists to predict oxidation behavior of alloy systems and to aid in the interpretation of experimental data
 - Theory of diffusion-controlled oxidation (Wagner)
 - Theory of transition from internal to external oxidation (Wagner)
 - Rate law theory (many)
 - Various thermodynamic diagrams

Empirical Design

- Identify required properties
 - Mechanical properties
 - Physical properties
 - Corrosion/oxidation resistance
 - Formability
 - Cost
- Correlate required properties with existing knowledge
 - Do you need a new alloy?
 - Where should you begin?

Design Tools

- Alloy selection tools
 - Handbooks
 - Software (e.g. CES4 Granta Design)
- Phase diagrams
- Constitutive equations
- Computer modeling

Constitutive Equations

- Simple predictive expressions
- Developed by analysis of large data sets
- Single purpose
- Generally of limited applicability
- Good for predicting effects of minor variations in composition, processing, etc.

Constitutive Expressions

Ferrite Number (δ ferrite)

 $FN = 3.53(Cr_{eq}) - 2.61(Ni_{eq}) - 30.03$

 $(Cr_{eq}) = [Cr] + [Mo] + 1.5[Si] + 2.27[Ti+V] + 0.5[Nb+W] + 0.21[Ta]$ $(Ni_{eq}) = [Ni] + 30[C+N] + 0.5[Mn] + 0.4[Cu+Co]$

Electron Vacancy (TCP phases)

 $N_V = 0.66[Ni] + 1.71[Co] + 2.66[Fe] + 4.66[Cr+Mo+W] + 5.66[V] + 6.66[Zr] + 10.66[Nb]$

Sigma Solvus

 $T_{s} = \{26.4[Cr] + 6.7[Mn] + 50.9[Mo] + 92.2[Si] + 447\} - \{9.2[Ni] + 17.9[Cu] + 230.4[C] + 238.4[N]\} \text{ Rechsteiner}$ Pitting Resistance Equivalency (relative corrosion resistance) $PRE_{N} = [Cr] + 3.3[Mo] + X[N] \qquad X = 16 \text{ or } 30$ Coefficient of thermal expansion (Ni-base alloys) $\alpha_{L} = 13.87 + 0.073[Cr] - 0.080[W] - 0.082[Mo] - 0.018[AI] - 0.163[Ti] \text{ Yamamoto et. al.}$

- Thermodynamic models (Thermo-Calc, JMatPro software)
 - Prediction of equilibrium phase balances via free energy minimization methods
 - Input factors include alloy composition, state variables
 - Generate phase diagrams, stepped output (temperature, composition)
 - Prediction of static situations

Diagrams from Thermo-Calc example manual

Al-0.23Cr-1.6Cu-0.5Fe-2.5Mg-0.3Mn-0.4Si-5.6Zn wt(%)

Al-1.6Cu-0.1Fe-1.16Mg-0.2Mn-0.99Ni-11.9Si-0.02Ti-0.33Zn wt(%)

- Recent software packages include a wider array of functions
 - JMatPro
 - Physical, mechanical properties
 - Lattice mismatch
 - TTT and CCT diagrams
 - Particle coarsening

IN939 nickel superalloy heat treated at 720C

- Recent software packages include a wider array of functions
 - JMatPro
 - Physical, mechanical properties
 - Lattice mismatch
 - TTT and CCT diagrams
 - Particle coarsening
 - DICTRA
 - Diffusion in multi-component systems

- Strengths
 - Rapid analysis
 - Inexpensive to run numerous trials
- Shortcomings
 - Only as good as the systematic assessment
 - Assumes equilibrium conditions
 - Requires experimental analysis and verification
 - Can be difficult to use

Computational Design Tools for Oxidation Resistance

- Few computational tools exist for predicting phase formation
 - A combination of thermodynamic and diffusion models should be able to address problem
- Some recent tools based on observations have become available to predict oxidation behavior under certain conditions
 - COSP for cyclic oxidation and spallation (Smialek-NASA)
 - ASSET alloy selection program (John-Shell/MTI)
- Custom approaches ALC example
 - Lifetime map for metal foil
 - Oxidation and creep are active
 - Phenomenological model based on experimental data

Lifetime Map for Metal Foil

Lifetime Map for Metal Foil

Allegheny Technologies

Design of Experiments

- Utilize statistical methods and tools to construct experimental program
- Select critical variables
- Allow to vary in a controlled fashion
- Analyze the results to determine
 - Main effects of primary factors
 - Interactions between factors

Factorial Analysis

- Factors are critical variables
- Levels are quantitative or qualitative (e.g. high or low) factor values
- Provides more information than varying one factor at a time
 - Yields main effects of individual factors
 - Yields interactions between factors that simple approach overlooks
 - Proper use of randomization and repetition reduces sensitivity to baseline conditions

Factorial Analysis

Simplest example is a two factor DOE experiment

Allegheny Technologies

Factorial Analysis

- Simple or highly focused experiments can be run fullfactorial
- Factorial analysis scales quickly to large numbers of experiments when numbers of factors is high

	experiments		
number of factors (k)	2 levels 2 ^k	3 levels 3 ^k	
2	4	9	
3	8	27	
4	16	81	
5	32	243	
6	64	729	
7	128	2.187	
8	256	6,561	

number of

Fractional Factorial Analysis

- Permits down-selection and significant reduction in required number of tests
- Yields less information, particularly for higher order interactions
- Higher order terms (3rd order and above) are generally not significant
- If any factor is not statistically significant, fractional factorial collapses to a full factorial
- Some effects will be confounded and cannot be evaluated separately (aliased)
- Resolution must be selected carefully to produce useful information
- DOE tools used to generate test matrices and to determine aliased effects

Transition to Production

- Transition from design to production can be difficult
- Limited by available production methods and economics
- What works on a laboratory-scale may not work in a production plant

much larger much faster far less forgiving

Lab-Scale Alloy Production

- Melting
 - Small vacuum-melted buttons (< 1 pound)</p>
 - Larger ingots (20-300 pounds) from VIM or VIM/ESR furnaces
- Product form
 - As-cast pieces
 - Small forgings
 - Narrow hand-rolled sheet and very small coils

Mill-Scale Production

- Melting
 - Small heats
 - Vacuum-melted as small as 1,000 pounds
 - Air-melted as small as 10 tons (20,000 pounds)
 - Large heats
 - Vacuum-melted up to 15 tons (30,000 pounds)
 - Air-melted up to 180 tons (360,000 pounds)
- Product forms
 - Large coils, plates, bars, etc.
 - Quantities often restricted to product of a heat, particularly for sole-purpose alloys

Melting

Melting

- Low-cost air melting practices
 - EAF/AOD with continuous casting
 - EAF/AOD with ingot casting
 - EAF with continuous casting (limited)
- Higher-cost premium melting/remelting practices
 - -VIM
 - ESR
 - VAR
 - Exotic practices (PM, PAM, EB, EB-CHR)

Melting — Common Issues

- Elemental segregation
- Solidification cracking and defects
- Reactive element additions
- Volatile element additions
- Residual/minor element control

Melting Issues — Mitigation

- Minimize alloy additions which can be problematic
- Change to melting methods which minimize detrimental effects
 - Some alloys are difficult to continuously cast
 - Some alloys require special practices
 - Some alloys have to be remelted
 - Extreme tendency for segregation
 - Cleanliness requirements
- Some alloys cannot be produced by traditional melt methods

Downstream Processing

- Hot rolling
 - Hot strip mill (once-through)
 - Steckel mill (reversing)
- Cold rolling
 - High-throughput mills (Sendzimir, reversing)
 - Heavy reduction
 - Fast speeds
- Annealing
 - Continuous process (strand)
 - Air anneal and descaling (pickling)
 - Hydrogen bright anneal
 - Vacuum anneal

Hot Rolling

Hot Rolling

- Hot workability range
 - Can be narrow for highly alloyed materials
 - Hot deformation testing to determine workability range
- Very strong alloys may be difficult to work
 - Powerful hot rolling mills
 - Smaller sizes
- Precipitation reactions (e.g. γ^\prime) make difficult coiling and uncoiling
 - Kinetic studies to determine precipitation behavior
 - Chemistry modifications
- Edge checking
 - Control of temperature uniformity

Cold Rolling

Cold Rolling

- Poor rolling behavior
 - Brittleness
 - High work hardening rate
- Causes
 - Chemistry
 - Microstructure / phase balance
- Consequences
 - Numerous anneal cycles
 - Breakage / lower yield
- Potential Solutions
 - Minimize elements which impact rollability
 - Control phase balance
 - Lab rolling trials to establish process limits

Annealing and Pickling

Annealing and Pickling

- Critical factors
 - Grain size
 - Surface condition
 - Oxide removal
 - Removal of altered metal (e.g. Cr-depleted zone for stainless steel, alpha case layer for Ti)
- Potential solutions
 - Annealing cycle trials (Gleeble)
 - Lab-scale pickling trials
 - Corrosion testing
 - Oxidation testing
 - Welding trials

Economics

- More expensive alloying additions
 - Nickel, molybdenum, cobalt
 - Rare earth elements
 - Precious metals
- Price volatility
 - Alloying additions
 - Base metals

Economics

- Alloying additions which may necessitate advanced melting practices
 - Rare earth elements
 - Refractory metals
 - Volatile additions
 - Cleanliness / ultra-low residual element requirements
- Sole-purpose generally more expensive than multi-purpose alloys
- Best technical solution not always best commercial solution

Economics

- When is the material cost critical?
 - -Questionable
 - Prototypes / proof of concept
 - Critical performance requirements
 - -Perhaps
 - Low volume production
 - Low quantity incorporation
 - -Certainly
 - High volume production
 - High quantity incorporation

Selected Recent ATI Alloy Development Projects

- AL 2003[™] alloy
 - Lean duplex stainless steel alloy
 - Balanced corrosion resistance and strength at relatively low cost (economic alternative to Types 316 and 317 stainless)
- ATI[™] 425 alloy
 - Alloy titanium made by coil processing without anisotropy
 - Properties similar to Ti-6-4 at lower cost
- AL 347HP[™] alloy
 - Existing austenitic stainless steel composition (UNS S34700)
 - Proprietary processing yields thirty percent improvement in creep strength
- Type 388 (ZeCor[™] alloy)
 - High-silicon austenitic stainless steel
 - Resistance to hot, concentrated sulfuric acid at relatively low cost

™ Trademark of ATI Properties, Inc. ZeCor is a trademark of Monsanto Industries LLC

Example - AL 2003[™] Alloy Development

- Development of a lean duplex (α - γ) stainless steel
 - Adequate corrosion resistance and mechanical properties
 - Improved weldability
 - Improved phase stability
 - Lower cost
- Literature survey / IP review
- Selection of compositions
 - Thermo-Calc simulations
 - PRE_N, MD₃₀, FN, T_{σ}
- Melted numerous lab-scale heats
 - Processed to plate and sheet sizes
 - Corrosion, impact, tensile testing, microstructural evaluation; heat-treatment studies for sigma solvus and α - γ phase balance
- Selection of primary composition

with respect to existing alloys

Example - AL 2003[™] Alloy Development

- Melted several commercial-scale heats
 - Corrosion, impact, tensile testing
 - Microstructural evaluation
 - Welding trials
 - Modified practices and chemistry to optimize corrosion resistance and microstructure, phase balance, and mechanical properties
- Qualifications
 - Acquired UNS number (S32003)
 - ASTM approvals for plate, sheet, strip, pipe, and tubing
 - Working on NORSOK, ASME code qualification (requires three heats) and customer acceptance

Example - AL 347HP[™] Alloy Development

- Existing alloy modified to meet need for higher creep strength at foil thickness (200 microns or less)
- Optimize NbC carbide particle distribution and grain size by controlling thermomechanical processing
- Proven in laboratory setting on small trial pieces (ORNL)
 - Examine different heat input levels
 - Varied time at temperature combinations
- Ten-foot sections of foil spliced into production continuous coil anneal lines
 - Examine different heat input levels
 - Vary furnace set points and line speeds
 - Translation of lab experiments to production practice
- Full production coils processed using new annealing cycle
- Verified at all stages with creep testing and metallography

Summary

- Iron and nickel-base alloy design and development is a relatively mature science
- Helpful tools exist to aid in alloy development
- Transition from laboratory to practice is critical, complex, and often challenging

Acknowledgements

- David Bergstrom, ATI Allegheny Ludlum
- John Dunn, ATI Allegheny Ludlum
- John Grubb, ATI Allegheny Ludlum
- Henry Lippard, ATI Allvac
- Tom Matway, ATI Allegheny Ludlum
- Charles Stinner, ATI Allegheny Ludlum
- Steve Washko, ATI Allegheny Ludlum
- Prabhakar Singh, PNNL

