Oxidation Behavior and In-Cell Performance of Developmental SOFC Interconnect Alloys

M.P. Brady, B.A. Pint, T.R. Armstrong, Oak Ridge National Laboratory, Oak Ridge, TN

C.E. Milliken and E. D. Kreidler Technology Management, Inc., Cleveland, OH

Z.G. Lu and J.H. Zhu Tennessee Tech University, Cookeville, TN

Materials Issues for Distributed Energy Resources 2002 ASM Fall Meeting, Columbus, OH Oct. 7-10, 2002

Exploratory Effort

- •Background- Key issues for metallic interconnects
- •First Screening: Microalloyed Ni and ferritic alloy
 - Oxidation
 - Electrical Resistivity
 - In-Cell Performance
- •Results on oxidation (volatility) and electrical resistivity studies for 2nd series of ferritic alloys
- Concluding remarks

Metallic Interconnects in SOFC Fuel Cells

Key Interconnect Functions are to Electrically Connect Series of Cells into Stacks and to Separate Fuel/Oxidant

- •Environment: 700-850°C, Oxidizing/Reducing, Thermal expansion compatibility with ceramic cell components is important in some designs
- •Benchmark: Coated Cr-5Fe-1Y₂O₃ or Doped Perovskite Ceramic (\$, Brittle)

Advantages of Planar Metallic Interconnects

- Potentially Significantly Lower Cost Than Ceramics
 Raw Materials and Processing/Machining
- •Mechanical Integrity-Thinner Plates than Ceramics
- •Dense (Important for Fuel/Oxidant Separation)
- •Potential for Better Performance Due to High Electrical Conductivity

Major Issue for Metallic Interconnects is Maintenance of Electrical Conductivity

- Metals Oxidize in Fuel Cell Environments
- •Oxidation Products Usually Electrically Resistive, Can Contaminate/Degrade Other Cell Components
- •Manage Surface Chemistry via Alloy Design and Processing to Maintain Sufficient Electrical Conductivity

No Clear Choice for Metallic Interconnects

Oxide	Max Theoretical	*Bulk Resistivity	*Source
	Scaling Limit	(ohm-cm)	
SiO_2	1750°C	$7 \times 10^6 600 ^{\circ}$ C	44 th CRC
Al_2O_3	1450℃	5 X 10 ⁸ 700 ℃	MSE CRC
Cr_2O_3	1100℃	1 X 10 ² 800 ℃	Holt+Kofstad
NiO	850℃	5-7 X 10 ⁰ 900 ℃	Nowotny + Sorrell
CoO	700℃	1 X 10 ⁰ 950 ℃	Nowotny +

•SiO₂, Al₂O₃ too insulating

•Cr₂O₃: high volatility-contaminates cell, borderline resistivity

•NiO,CoO: high CTE, sulfur, borderline scaling

Options are Limited

- •No Uncoated, Non-Precious Metal Viable Above 850°C
- •Ni/NiO has a Chance in Range of 700 to 850°C if Successfully Doped to Lower Scale Growth Rate
 - -No volatility issues
 - -Noble (won't oxidize) in fuel-side environment
 - -Fuel Sulfur Impurities May Lead to Low Melting Ni-S Compounds
 - -CTE mismatch requires use as coating (substrate interdiffusion)
- •Literature Data Suggests Conventional Cr₂O₃-Formers Not Viable Above ~700-800°C (possibly lower). Will need to:
- -Microalloy to reduce scale growth rate/increase scale conductivity
- -Reduce volatility

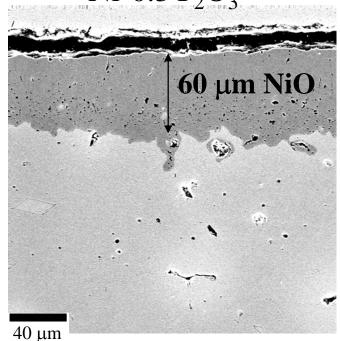
No One Alloy May be Able to Meet Conductivity and CTE Requirements

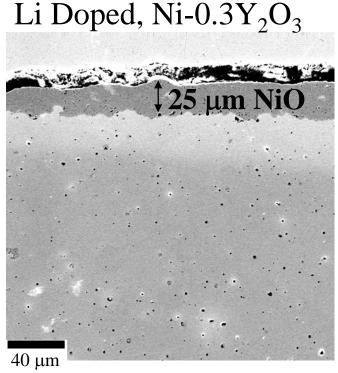
- Optimize for Scale Growth Rate and Conductivity
 - -May require different alloy for anode/cathode environments
 - -May not be possible to co-optimize for CTE compatibility
- •Eventual Implementation as Cladding or Coating on CTE Optimized Alloy Substrate
- •Investigate Microalloyed Ni and Microalloyed Ferritic

Candidate Alloys

- Microalloyed Ni
 - Hot-Pressed Ni-0.3Y₂O₃ Wt.%, Cast/Rolled Ni-0.15Y Wt.%
 - Hot-Pressed Li-Doped Ni-0.3Y₂O₃ (0.07 wt.%, 0.6 at.% Li)
 - Rationale:
 - Y or Y₂O₃ to reduce NiO growth rate
 - Li to reduce NiO growth rate, increase conductivity
- •Microalloyed Ferritic (Based on Quadakkers et al.)
 - -Cast and Rolled Fe-25Cr-1Mn-0.5Ti-0.4La wt.%
 - -Rationale: reduced volatility, scale growth rate, and contact resistance reported with Mn, Ti, La additions

Screening Evaluation

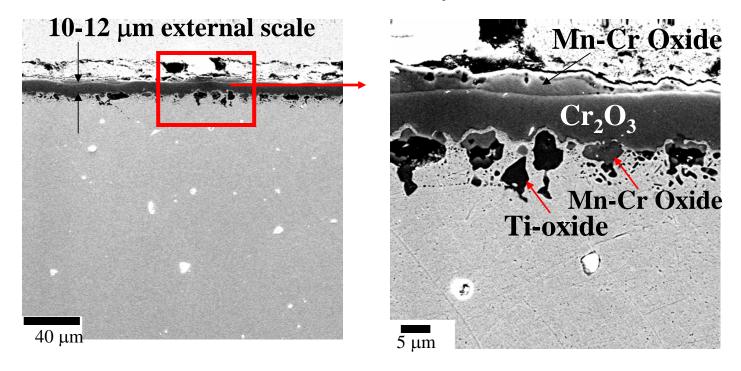

- •Air oxidation screening: 3, 1 week cycles at 850°C (500 h Total)
- •Area specific resistance (ASR) measurements
- •In-cell stack test: 400-800 h at 850°C (isothermal)


Adherent NiO Formed at 850°C in Air

(similar behavior for 0.15Y and 0.3Y₂O₃ doping)

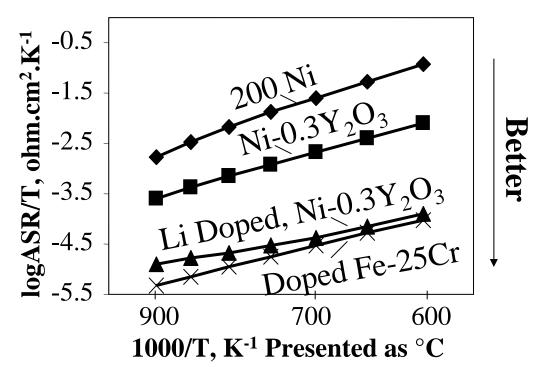
SEM Cross-sections after 3, 1 week cycles (500 h), 850°C, Air

 $Ni-0.3Y_2O_3$

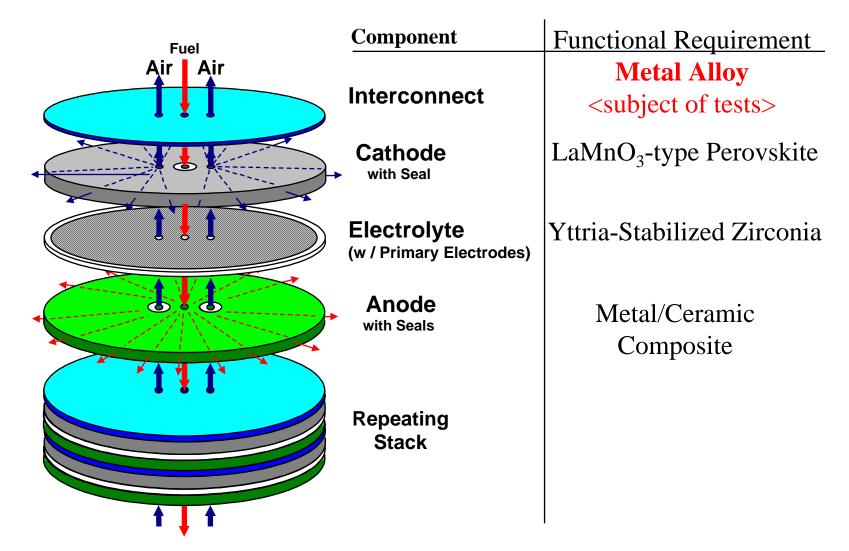


- •Li slowed NiO growth beyond that achieved with Y₂O₃
- •NiO growth at 850°C in range of estimated growth rate for potentially acceptable resistivity (based on bulk NiO)

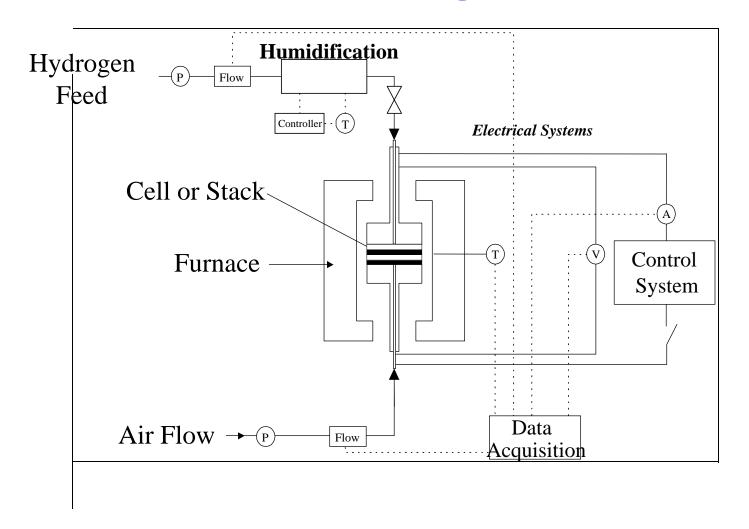
Duplex Scale Formed on Fe-25Cr-1Mn-0.5Ti-0.4La at 850°C in Air


SEM Cross-section after 3, 1 week cycles (500 h), 850°C, Air

- •Mn, Cr-based oxide (likely spinel) above continuous Cr₂O₃
- •Internal oxidation suggests overdoping of Ti, possibly La (levels not optimized)

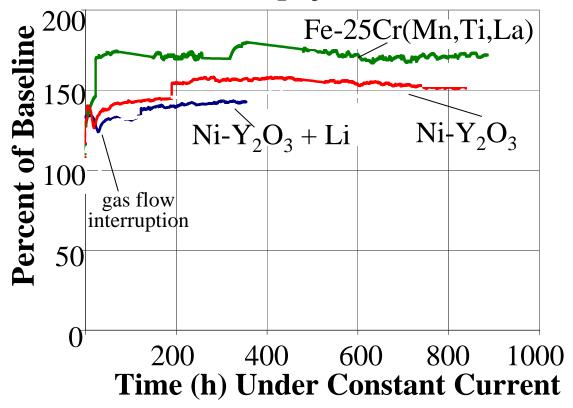

Li-Doped Ni-0.3Y₂O₃ Exhibits Similar ASR to Fe-25Cr-1Mn-0.5Ti-0.4La wt.%

Arrhenius Plot of Area Specific Resistance vs. 1/T 3, 1 week cycles (500 h), 850°C, Air (Pt Electrode, DC 4 point method)


•Cross-section analysis of scale thickness not yet performed (ASR trends for Ni-alloys consistent w/oxidation mass change data)

TMI's Radial Flow Cell

•Cell Design Tolerates Some Metal CTE Mismatch-Ideal Test Bed for Candidate Interconnect Alloys


Cell Test Configuration

•2-5 Cell Stacks Tested at ~ 850°C Run with Humidified H₂

Moderate Performance Improvement Over Conventional Cr₂O₃-Forming Alloys

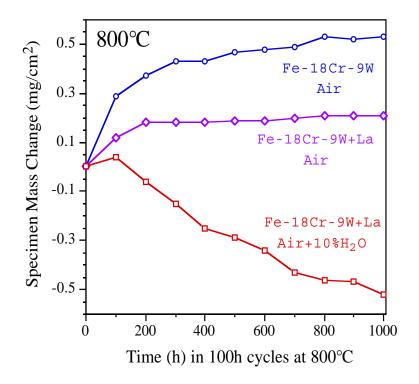
850°C In-Cell Performance Relative to 100% Baseline for Commercial Cr₂O₃-Forming Alloys

- •Ferritic 1.7X better than baseline, Ni 1.6X baseline
- •Li doping effect in Ni did not translate to better performance
- •Stack degradation rates 2-3X greater than long term target rates

Ni-0.15Y Alloy Reacted with Cathode

(similar behavior for Ni-0.3Y₂O₃)

SEM Cross-Section of Ni Interconnect/Cathode Interface after ~ 600 h in-cell at 850°C

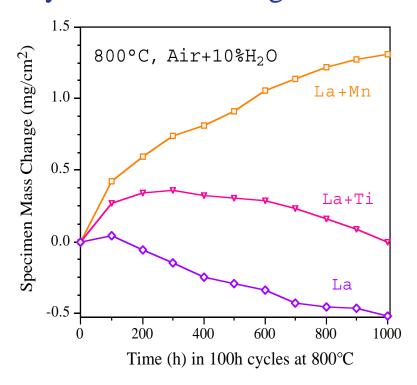

- •No Ni alloy oxidation or reaction at anode contact layer
- •Preliminary analysis of Fe25Cr(Mn,Ti,La) alloy revealed thin dense scale at anode and cathode-not yet analyzed

Alloy Optimization Will Require Detailed Oxidation and Electrical Resistivity Studies

Ferritic Baseline Composition of Fe-18Cr-9W wt.% Selected for Study

- •Ueda and Taimatsu, 2000 baseline composition for lower CTE (improved thermal compatibility with zirconia)
- •Controlled levels of La, Mn, Ti (Quadakkers et al, 2000)
- •Oxidation/Volatility Assessment in 10% H₂O, 800-900°C, 1h or 100h cycles, 500-1000+ total h
- •Post-Oxidation Area Specific Resistance (ASR) Measurements

Performance of microalloyed Fe-18Cr-9W Laboratory oxidation testing at 800°C (1472°F)

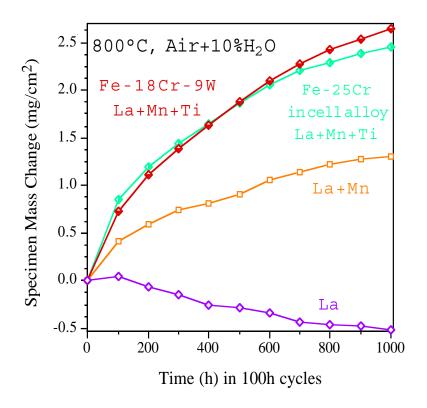

Base alloy - protective scale in air

La - reduces scale growth rate (lower mass gain)

Add ${\rm H_2O}$ - mass loss due to volatilization of ${\rm CrO_2}$ (OH) $_2$

This volatilization causes a contamination problem in fuel cells!

Performance of microalloyed Fe-18Cr-9W Laboratory oxidation testing at 800°C (1472°F)

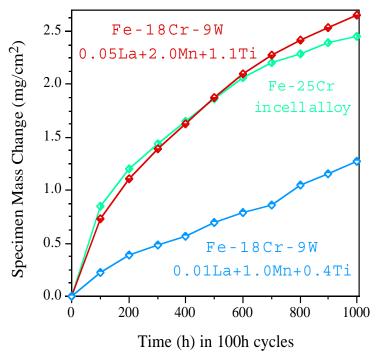


Try to minimize evaporation:

La+Ti - higher initial mass gain, but mass loss at later times

La+Mn - no mass loss detected, suggests reduction in volatility

Optimization of microalloyed Fe-18Cr-9W Laboratory oxidation testing at 800°C (1472°F)



Combination of La+Mn+Ti reported to have best performance

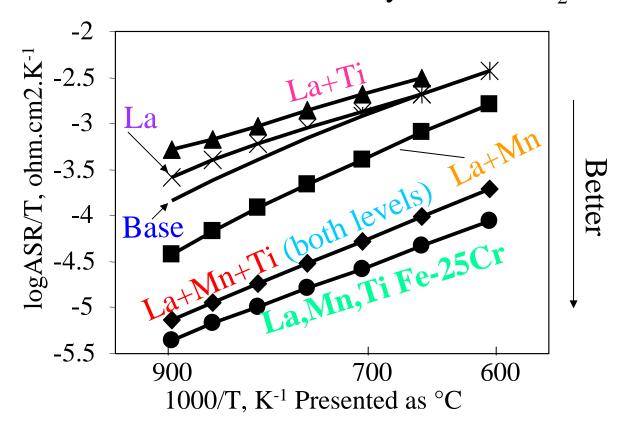
Adding more elements to alloy leads to higher mass gains due to

internal oxidation of La, Mn and Ti

Optimization of microalloyed Fe-18Cr-9W Laboratory oxidation testing at 800°C (1472°F)

First attempt at optimization:

```
By dropping La, Mn and Ti (at.%):


cut mass gain by 50% (in cell test: attack 2-3X high)

further optimization possible!

However, can't rely only on mass change data alone...
```

Results Suggest Co-Doping of Mn and Ti Significantly Reduces Scale ASR

Arrhenius Plot of Area Specific Resistance vs. 1/T Fe-18Cr-9W Base, 550 1h Cycles, 10% H₂O

- La,Mn,Ti synergistic trends consistent with Quadakkers et al.
- Need oxide thickness & chemistry to better assess results

Summary

Using commercial Cr₂O₃-forming interconnects as baseline :

- •Microalloyed Ferritic Cr₂O₃ Former up to 80% Performance Improvement Over Baseline Alloy
 - In-cell degradation rate too high (2-3X long term target)
 - Series of Fe-Cr-W alloys indicated:
 - La: reduce Cr₂O₃ growth rate
 - La +Mn: reduce Cr₂O₃ evaporation (less cell contamination?)
 - La+Mn+Ti: synergistic decrease in ASR (Pt electrode)
 - Further optimization of composition may be possible
- •Microalloyed Ni/NiO up to 60% Performance Improvement Over Baseline Alloy
 - -Comparable ASR to doped ferritic (Pt electrode)
 - -Reactivity with cathode may limit performance
 - -Degradation rate also too high (2-3X long term target)
 - -Merits further investigation (possibility as cladding)