Sandia Brazing Research and Modeling Capabilities*

F. Michael Hosking Materials and Process Sciences Center Sandia National Laboratories Albuquerque, NM 87185-0889

* Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Principal SNL/NM Technical Brazing Contacts

Metals: Mike Hosking & John Stephens, Org. 1833 & Chuck Walker, Org. 14171
Ceramic: Ron Loehman, Jill Glass & Sandy Monroe, Org. 1843
Microanalysis: Joe Michael, Tom Headley, Paul Kotula & Paul Hlava, Org. 1822
Modeling: Steve Burchett, Frank Dempsey, Rick Givler & Jerry Wellman, Org. 9100

Brazing is widely used to join metals and ceramics to each other for a variety of high reliability components

- headers
- connectors
- feedthroughs
- thermal batteries
- high voltage tubes
- electromechanical devices
- storage containers

New active brazing alloys simplify hermetic joining issues

Basis: Oxide-forming additives to filler metal (e.g., V, Ti, Zr, Hf) promote direct wetting and adhesion to the ceramic materials (Al₂O₃, Si₃N₄, cermet, ...)

Payoff: Eliminate complex Mo-Mn metallize / Niplate & related processing for conventional alloys

Issue: Complex reactions between active braze elements and ceramic/metal base materials need to be understood to control and optimize process

TiO, Ti₂O & Cu₃Ti₃O reaction products

Braze flow visualization and dissolution reactions are important components in understanding the braze process

Cu-Ni binary braze flow & dissolution experiments

Braze Capillary Flow Visualization

Recent Accomplishments

- Conference paper / presentations (IBSC'03; CSM Materials Science Seminar; C6 ASCI Solidification Working Group)
- S&T of Welding & Joining journal paper
- In-Situ Visualization of Braze Flow patent

Active brazing technology is bridging a wide range of needs because of the fundamental knowledge being developed

Alumina ceramic / braze interface reactions vary significantly with active element

99.8%

17.5Ni - 2.5Ti

94%

Competing reactions between dissimilar base materials can introduce unwanted results

... compatibility

issues

Alumina

ZrO₂ reaction layer

Ag-2Zr (wt. %) ABA

Zr activation

Fracture strengths for 94 & 99.8% alumina brazed with Ti & V-bearing Au-Ni filler metals exhibit dependency on glassy phase and more stable ${\rm TiO_x}$ reaction product

Au - 16.0Ni -

1.75V - 0.75Mo

99.8%

94%

99.8%

18.0Ni - 0.8Ti

Strength (MPa)

Fracture

100

80

60

40

20

A multidisciplinary approach to characterizing the different brazing reactions and properties is necessary for success

Determining effects of reaction products & microstructures on properties (hermeticity & strength) as a function of active element (thermodynamics / kinetics), base material (adhesion / dissolution), brazing conditions (temperature, time, atmosphere, heating cycle & gradients, orientation), surface preparation (ceramic air-firing).

Ability to correlate braze interface reactions with desired properties will yield more producible & reliable joints

Single crystal sapphire & polycrystalline alumina brazed with Ag-2Zr

94% alumina brazed with Ag-2Zr is hermetic, fails in the bulk ceramic and has 130 MPa tensile strength

Ag-3.4Hf ceramic braze joints also demonstrate similar excellent properties (hermetic & 125 MPa)

Recent Accomplishments

- Implementation of active brazing in production
- Conference paper / presentations (ASM Materials Solutions 2002; AWS IBSC'03; ACerS 2003)
- Metallurgical Transactions A paper (in publication)
- Coating System for Direct Ceramic Brazing patents

Diffusion bonding offers an alternative joining process

Ceramic-metal and metal-metal joints are possible

- a) Hard ceramic and comparatively soft metal surfaces come in contact (T, t, P)
- b) Metal surface yields under high local stresses
- c) Deformation continues mainly in the metal, leading to interface diffusion & void shrinkage
- d) Metallurgical bond is formed

FEA Brazing Model Development & Validation

FEA Thermal Modeling of Furnace Brazing

- convective heating by hydrogen gas is assumed negligible
- heating driven by radiation from furnace elements & conduction from Mo shelves to work piece

Work Rack & Parts

- Nonlinear, 3-D transient thermal finite element code
- Ability to mesh very fine details (large node and surface radiation enclosure)

Typical Model Inputs

- materials density
- thermal conductivity
- specific heat
- emissivity
- thermal boundary conditions

Simulations processed on massively parallel teraflop compute server

Example: Two-Step, Cu + 50Au-50Cu Braze Assembly Process Characterization

Process Space Simulations

Process Space:

- Thermal boundary conditions:
 - -1st ramp rate (10, 40°C/min)
 - -1st hold time (5, 25 min)
 - -1st hold temp (930, 960°C)
 - -2^{nd} ramp rate (10, 40°C/min)
 - -peak temp (1000, 1030°C)
 - -time @ peak temp (0, 10 min)
 - -cooling rate (10, 40°C/min)
- Number of shelves (4, 7)
- Number of fixtures/shelf (2, 5)
- Shelf type (solid, perforated)
- Fixture material (Mo, Kovar®)
- Emissivity (low, high)

Data acquired:

- Peak brazing temperature
- Time braze is melted
- Temperature uniformity
- Determine optimization parameters in <u>process space</u> versus experimental "point solutions"

Trends at Peak Temperature:

- Top and bottom shelves are hottest (trim heater settings)
- Middle shelf most uniform
- Center unit of five on each shelf is coolest (~ 5°C lower)
- 10 min. hold at set temp. gives uniform heating, but increases time above melting
- Brazing temperature is uniform within individual units

Two-level fractional factorial design for 12 factors in 16 unique trials

Example: DoE_x Screening Sensitivities for Thermal Characterization of Brazing Process

Factor sensitivities to the brazing conditions on the central shelf
—— main effect factor significance

