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OBJECTIVES 

1. Provide fundamental relationships between SOFC performance and 
operating conditions (T, PO2, V, etc..)

2. Develop transient (time dependent) transport model

3. Extend models to: 
• Thermo-mechanical stability

- Fracture toughness
- Elastic modulus

• Thermo-chemical stability
- Pore formation and reactions at cathode/electrolyte interface

• Multilayer structures
- Interfacial defect concentration, etc.

4. Incorporate microstructural effects such as grain boundaries and grain-size 
distribution

5. Experimentally verify models and devise strategies to obtain relevant 
material constants

6. Assemble software package for integration into SECA failure analysis 
models



TASKS TO BE PERFORMED FOR PHASE 1 

1. Complete continuum-level electrochemical model (CLEM) with a non-linear 
Galvani potential and potential-dependent boundary values.

2. Extend CLEM to thermo-chemical and thermo-mechanical properties.

3. Model transient behavior of defects in SOFCs.

4. Experimentally determine SOFC time constants from R-C circuit analysis of 
cathodes, electrolytes and anodes for use in evaluating the effect of voltage 
transients on failure mechanisms and other time dependent properties.  
(These will be integrated into the model in Phase II.)

5. Develop a software package for CLEM to integrate into SOFC performance 
models used by NETL, PNNL, ORNL and the SECA industrial teams.



CONTINUUM LEVEL ELECTROCHEMICAL MODEL - Defect Equilbiria

Electron-Hole Pair Formation
 null ↔ ′ e +h•

    Ki = cech = Nv Nc exp −Eg kBT( )Features of the Defect Model

• Continuous functions for the defect 
concentrations vs. discontinuous 
“piecewise” Brouwer approach.

• Dependent on thermodynamic 
quantities, namely the mass-action 
constants (K’s).

• Quantitative for any SOE/MIEC.

• Derived from fundamental 
thermodynamic equations.
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DEFECT EQUILIBRIA - BROUWER APPROACH



CONTINUUM LEVEL ELECTROCHEMICAL MODEL - Defect Equilibria
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1. O. Porat and H. L. Tuller, J. Electroceramics 1 (1997) 42;  2. Eguchi et al, Solid State Ionics 52 (1992) 265. 

log PO2 (atm.) log PO2 (atm.)

Verified Continuum Level Electrochemical Model:
• vs. other models1

• vs. conductivity2

• vs. OCP



CONTINUUM LEVEL ELECTROCHEMICAL MODEL - Electrochemical Performance
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FUNDAMENTAL TRANSPORT EQUATIONS & DEFINITIONS

φ∇−∇−= iiiii cucDjNernst-Planckj flux
J current
c concentration
φ potential
z charge num.
q elec. charge
σ conductivity
u mobility
D diffusivity
L thickness
kB Boltz. const.
Φth Nernst poten.
Φapp exter. potential
T temperature

Subscripts
V O2 vacancies
e electrons

∑=∑=
i

ii
i

i jzqJJCurrent

[ ]∫ ⋅σ=σ −−− L
ii xxL 0

111 d)(Average conductivity

0≈++=∑ eeAAVV
i

ii czczczczCharge neutrality

   φL − φ0 = ∆φ= Φapp − Φth − kBT zV q( )−1 ln cVL cV0( )
Local equilibrium



LINEAR POTENTIAL MODELS: DEFECT CONCENTRATION PROFILES
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LINEAR POTENTIAL MODEL: DEFECT CONCENTRATION PROFILES

Potential-Dependent 
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NON-LINEAR POTENTIAL MODEL

We have addressed the short comings of the linear potential models with fixed 

boundary conditions (independent of applied potential) by developing a continuum 

level electrochemical model that:

• allows the Galvani potential to be non-linear 

• incorporates potential dependent boundary conditions.

The key features employed in the development of the model are that:

• in steady-state the gradient of the flux is zero (i.e., ∇ ji = 0)  

• the divergence of the current is always zero (∇ J = 0)

• the free energy of formation for defects at the gas-solid interface has both a 

chemical (from the chemical potential) and an electrical component (from the 

overpotential) 



CONTINUUM LEVEL ELECTROCHEMICAL MODEL/NON-LINEAR POTENTIAL MODEL

  ∇
2φ = λ∇ 2cV

   
cV ( x) −cV0

− φ( x) −φ0
λ

= −γx

∇ J = 0 & ∇ ji = 0The fact that the gradient of both 
the (total) current and the flux of 
any species is zero is used to 
obtain two separate (but related) 
differential equations equations.

Each differential equation is 
solved and the results compared 
to generate the model  
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Galvani potential
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NON-LINEAR POTENTIAL MODEL: DEFECT CONCENTRATION PROFILES
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• In open-circuit there is little 
difference between LPM and N-
LPM.

• ∇ 2φ ∝ ∇ (∇ cV), so as ∇ cV → 0, 
φ becomes a linear function of x.

• Significant difference between 
LPM and N-LPM in short circuit
conditions where ∇ cV >> 0.

• Concentration gradients are not 
confined to the “near-boundary” 
areas for N-LPM.



NON-LINEAR POTENTIAL MODEL: POTENTIAL DISTRIBUTION
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NON-LINEAR POTENTIAL: TRANSFERENCE NUMBER & EFFICIENCY
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• The N-LPM doesn’t “force” 
∇ cV ≈ 0, thereby (falsely) 
suppressing the electron 
concentration.  Consequently, a 
reduced transference number 
and power and current 
efficiency is observed.



EXTENDING CONTINUUM LEVEL ELECTROCHEMICAL MODEL
TO MULTILAYERED SOFC ARCHITECTURE

Present Approach  

Proposed Approach 
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EXTENSION OF CONTINUUM LEVEL ELECTROCHEMICAL MODEL
TO THERMOCHEMICAL STABILITY: Electrolyte/Cathode Interface 

    

La1- ySr yMnO3-δ + δZrO2 + 3δ
2

OO
× → La1- y-δSr yMnO3-δ + δ

2
La 2Zr2O7 + 3δ

2
VO

•• + 3δ ′ e 

K ≈ La 2Zr2O7[ ]
δ
2 VO

••[ ]
3δ
2 ′ e [ ] 3δ
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δ
2 P
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−3δ
4
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EXTENSION OF CONTINUUM LEVEL ELECTROCHEMICAL MODEL 
TO THERMO-MECHANICAL PROPERTIES 

Ebond ≈ (1 – mn-1)Ba-m

*where B, n and m are empirically determined constants and m < n.

also

Y ~ a-(m+3) and   KIC ~ Y1/2a-3/2

&

a ~ cV

* M. Barsoum, in Fundamentals of Ceramics (McGraw-Hill, 1977). 
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SPATIAL VARIATION OF ELASTIC MODULUS (Y) & FRACTURE TOUGHNESS (KIC)
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TRANSIENT EFFECTS

Ni-YSZ       YSZ        LSM
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TRANSIENT TRANSPORT MODEL FOR ZIRCONIA 

Nernst-Planck flux equation

 ji = −Di∇ ci − uici∇ φ

  
∂ci
∂t

= −∇ ji

Material balance equation

 
J = q zi ji

i
∑

Current equation

  

∂cV
∂t

= DeDV
zeDe − zV DV

ze − zV( )∇ 2cV + zecA
q

kBT
∇ 2φ

 

 
 




Equations for flux, 

material balance, current 
and charge neutrality are 
manipulated to obtain 
expressions for the rate 
of change of defect 
concentration.

And an expression for 
the electric field as a 
function of defect 
concentrations.

  

∂ce
∂t

= DeDV
zeDe − zV DV

ze − zV( )∇ 2ce + zezV cA
q

kBT
∇ 2φ
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 






 
∇φ = −

J + zV qDV ∇ cV + zeqDe∇ ce( )
q zV uV cV + zeuece( )



For zirconia
In order to obtain a tractable solution 
at this time we will consider generally
two types of conductors

1. Good ionic conductors where 
∇ cV = 0 and cV >> ce (e.g. YSZ). 

2. Good electronic conductors 
where ∇ ce = 0 and ce >> cV (e.g. 
LSM).

Specifically, here we consider
zirconia

    

∇ cV ≈ 0 zV cV ≈ cA

cV >>>ce σV >> σe

Therefore

  
∇φ ≈ − J + zeqDe∇ ce

q zV uV cV( )
→ ∇ 2φ ≈ −zeDe

uV cA
∇ 2ce

  
∂cV
∂t

≈ 0

  

∂ce
∂t

=
zV − ze( )DeDV +De

2

zV DV − zeDe
∇ 2ce = α2∇ 2ce



TRANSIENT EFFECTS ON DEFECT CONCENTRATION - using Fourier series

CASE 1: Introduction 
of a PO2 gradient
Here we consider what 
happens when a zirconia 
electrolyte is first placed 
into a PO2 gradient.
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CASE 2: Changing the 
load resistance and/or 
the applied potential.
Here we consider what 
happens when the load 
resistance or an applied 
potential is changed for a 
zirconia electrolyte already 
operating in a PO2 gradient

  
φ(x, t ) = De

uV cA
ce (x, t )



CASE 1 CASE 2
Introduction of a PO2 gradient Changing the PO2 gradient,

applied potential or load resistance
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Before the zirconia electrolyte is introduced to a PO2
gradient (i.e., at t = 0), the concentration distribution 
is flat.  After the PO2 gradient is introduced, a new 
concentration distribution gradually established.

After the boundary concentrations are 
perturbed a new concentration distribution 
gradually established.

For the above processes, the time constant, τ, 
• τ ∝ 1/L (steady-state achieved more rapidly for thinner electrolytes)
• τ ∝ De (rapid electron diffusion helps system to reach steady-state



CASE 1: Introduction of a PO2 gradient 
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CASE 1 + Sinusoidal variation 
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CASE 1 + Square-wave variation 
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CASE 2: Changing the PO2 gradient/applied potential/load resistance
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CASE 2 + Triangular-wave variation 
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CASE 2 + Square-wave variation 
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CONCLUSIONS

We have developed a continuum level electrochemical model from which we can obtain
1. Continuous equations relating defect concentration to oxygen potential
2. Assumption free equations for the:

• Spatial distribution of ionic and electronic defects
• transport properties
• power and current efficiency of SOFC electrolytes

3. Thermo-chemical stability
4. Thermo-mechanical properties
5. Time evolution of the transport properties of oxide ion conducting materials.



APPLICATION TO SECA TEAMS

• Developed spatial relationships that can be used to model:
– Electrochemical performance
– Interaction between materials 

• Phase instability ->performance degradation
– Lattice expansion and Mechanical properties

• Delamination -> mechanical failure

• Extended model to transient behavior to determine effect of:
– Air/fuel compositional changes (start-up)and perturbations
– Load changes
– Thermal cycling

• Based on fundamental thermodynamic constants:
– Can be applied to any material set and geometry
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