DELPHI

Material Interconnect Development

01/28/2005

1 Delphi Confidential

Solid Oxide Fuel Cell (SOFC)

The Interconnect of an SOFC Stack

Electrically and physically connects adjacent fuel cells in an SOFC stack in Cathode electrical series. Electrolyte Anode Interconnect Separates the

Separates the cathode and anode gases.

L

 \mathbf{O}

A

D

Requirements for Metallic Interconnects

- **1. Excellent electrical conductivity in both air and fuel**
- 2. Oxidation resistant in both air and fuel
- 3. Impermeable to both air and fuel
- 4. Chemically compatible with sealing material and fuel cells
- 5. Strong oxide scale adherence during thermal cycling
- 6. Thermal expansion mismatch (CTE)

Compressive sealing – can use materials without a CTE match. Glass sealing – must match CTE of the fuel cell components.

Delphi Interconnect Requirements

Stationary Application

- 40,000 hours
- 100 thermal cycles
- Accommodate thermal cycling 25°C to 750°C

Transportation Application

- 10,000 hours
- 7000 thermal cycles
- Accommodate thermal cycling 25°C to 750°C
- High volume manufacturing
- Compatible with glass sealing technology

Inexpensive

- less than \$1.00/part (including manufacturing and materials)

Experimental Setup

- The oxidation kinetics of several ferritic stainless steel alloys including
 - 439, 430Ti, Crofer 22, 444, 409, Sumitomo Alloy and 434
 - and an austenitic SS 302.

were investigated for comparison with

- Inconel 718 and Haynes 230.

for use as interconnect materials.

 Due to possible Cr contamination issues with Delphi's cathode, a coating process and composition was investigated.

- Can the coating stop the diffusion of Cr from the substrate to the surface? Hence, preventing the vaporization of Cr at the metal/gas surface.
- Does the coating adversely affect the electrical conductivity of the interconnect? If so how much?

Experimental work

- The oxidation kinetics of the alloys were at 750°C in air and in wet hydrogen.
- Coupon samples were coated with LSC, a Mn-Cr spinel or Ag.
- Two different coating processes P1 and P2 were used.
- The oxidation kinetics of the <u>coated</u> samples were determined at 750°C in air.
- The electrical resistance of the coated and uncoated samples in air were determined.
- The coated samples after oxidation for 500 hours in air were analyzed with EDS to determine the presence of Cr in the coating.

Oxidation Kinetics in Air and Wet Hydrogen Uncoated Alloys

	Comparison of Parabolic Rate Constants			
	k g (thermogravimetry)			
	750 °C			
	Alloy	Air	N_2 - H_2 - H_2O	
		g²/cm⁴-hour	g²/cm⁴-hour	
	302SS	1.29 X 10 ⁻¹²	6.00 X 10 ⁻¹⁰	
	430Ti	5.42 X 10 ⁻¹³	9.17 X 10 ⁻¹⁰	
	439	2.37 X 10 ⁻¹²		
Lowest	Haynes 230	1.23 x 10 ⁻¹³	2.87 x 10 ⁻¹⁰	
	434	1.58 X 10 ⁻¹²		
Highest	Crofer 22	3.72 x 10 ⁻¹²	2.20 x 10 ⁻⁰⁹	
	Sumitomo	1.11 X 10 ⁻¹²		
	718	5.75 X 10 ⁻¹³	1.50 X 10 ⁻⁰⁹	
	444	7.57 X 10 ⁻¹³		
	625	1.54 X 10 ⁻¹³		
	409			

DELPHI

Oxidation Kinetics of Coated Samples

	Comparison of Parabolic Rate	Constants	
	coated samples		
	(thermogravimetry)	Ag-coated	
	Air		samples showed
	750°C	severe loss of	
	Alloy	g²/cm⁴-hour	oxidation.
	Sumitomo - LSC - P2	4.83 X 10 ⁻⁹	
	Sumitomo - silver - P1	5.96 X 10 ⁻⁹	
	718 - LSC - P2	1.28 X 10 ⁻⁹	
Highest	718 – silver – P1	1.48 X 10 ⁻⁰⁸	
	H230 - silver - P2	1.14 X 10 ⁻⁹	
Lowest	H230 – Mn,Cr,O – P2	7.20 X 10 ⁻¹⁰	
	430Ti - LSC - P1	3.46 X 10 ⁻¹⁰	'
	430Ti - Mn Cr O, - P2	1.15 X 10 ⁻⁹	
	302SS - LSC - P1	5.98 X 10 ⁻¹⁰	
	302SS - Mn Cr O - P2	1.99 X 10 ⁻⁹	
	Crofer 22 - Mn Cr O - P1	2.56 X 10 ⁻⁹	
9	Crofer 22 - silver - P2	1.10 X 10 ⁻⁸	DELPH

Area Specific Resistance (Samples were oxidized for 500 hours in air)

1000/Temperature (1000/K)

Area Specific Resistance (Ω/cm²)

(samples were oxidized for 500 hours in air)

LSC-Coated 718 with P2 Coating Process

The Energy Dispersive Spectrum, EDS of the LSC-coated, P2, Inconel 718 sample after 500 hours of oxidation at 750°C in air. No Cr was detected in this sample.

Cr Diffusion Through the Coating

Sumitomo alloy

- showed significant amounts of Cr in the EDS analysis after 500 hours of oxidation in air.
- regardless of coating composition or process.

430Ti alloy

- showed significant amounts of Cr in the EDS analysis after 500 hours of oxidation in air.
- regardless of coating composition or process.

• 718 alloy with the LSC coating using the P2 process

- no Cr was detected in the coating after 500 hours of oxidation in air.

H230 alloy was also coated with LSC using the P2 process

- no Cr was detected in the coating after 500 hours of oxidation in air.

The Material Issue

Ferritic SS

- Advantages

- » CTE match to fuel cell components
- » Can be used with glass sealing systems
- » Cheaper than Nibased superalloys

- Disadvantages

- » Oxidation kinetics are too fast above 650 °C.
- » Vaporization of Cr.
- » Severe spalling of oxide scale
- » Cr diffused through all coatings

Ni-Based Superalloys

- Advantages
 - » Slower oxidation kinetics
 - » More stable oxide scales
 - » Less spalling of oxide scale
 - Cr was hindered using an LSC coating and a coating process

- Disadvantages

- CTE mismatch is too great for use of glass sealing
- » More expensive than SS counterparts.

Austenitic SS

– Advantages

- » Less spalling of oxide scale from substrate
- Comparable cost to ferritic SS.

- Disadvantages

- CTE mismatch is too great for use of glass sealing
- » Cr diffused through all coatings

Summary

- The oxidation kinetics of ferritic stainless steels, austenitic stainless steels, and Ni-based superalloys were compared.
- A coating and a coating process were developed at Delphi which hindered the diffusion of Cr through the coating to the surface.
- The prevention of Cr diffusion to the coating/gas surface will prevent the vaporization of the Cr.
- The coating process was as important to the success of the coating as the coating material.
- The diffusion of Cr from the Ni-based superalloys is far less than that from the ferritic and austenitic stainless steels.
- This work allowed the creation of new interconnect designs for an SOFC stack.
- Future work
 - Determine length of time at temperature that Cr diffusion is hindered.
 - Determine the resistance increase over longer time periods between the coated and the uncoated samples.

