Reliability and Durability of Materials & Components for SOFCs

Edgar Lara-Curzio

Metals & Ceramics Division
Oak Ridge National Laboratory
Oak Ridge, TN 37831-6069

SECA Core Technology Program Review February 20, 2002

Acknowledgments

Work sponsored by the US Department of Energy, Office of Fossil Energy, SECA Core Technology Program at ORNL under Contract DE-AC05-00OR22725 with UT-Battelle, LLC.

M. Radovic, B. Armstrong, Claudia Walls, Michael Lance Metals & Ceramics Division Oak Ridge National Laboratory

Outline

- Objectives
- Predicting Reliability
 - Infancy Failures
 - Wear/Degradation-induced Failure
- Evaluation of Material Properties
- Implications of Results for Manufacturing
- Future Work
 - Phase Identification and Micromechanical Stress Calculations

Objectives

In collaboration with industrial teams and other Core Technology Program participants,

- To develop/adapt/recommend test techniques to evaluate the properties and behavior of materials and components for SOFC.
- To identify and understand the mechanism responsible for the failure of materials and components for SOFCs.
- To develop methodologies for predicting the durability and reliability of materials and components for SOFCs.

A bathtub curve describes the evolution of the failure rate for most complex systems

What information is needed to predict infancy failures of SOFCs?

- Stress distribution
- Distribution of strengths

Stress (MPa)

What information is needed to predict infancy failures of SOFCs?

Stress Distribution

- Geometry
- Temperature Distribution
- Mechanical Loads
- Boundary Conditions
- Elastic Constants ←
- Volumetric Changes ←
- Thermal Expansion

- porosity
- temperature

Volumetric Changes due to reduction

Reliability/Probability of Failure

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Distribution of Strengths

Strength as a function of:

- porosity
- temperature
- size

Toughness

interfacial

Characterized Materials

8YSZ - Zirconia stabilized with 8mol% Yttria NiO/YSZ - 75mol%NiO/25mol%YSZ, a precursor to Ni/YSZ anode

		8YSZ			ı	NiO/YSZ	Z	
# of laminated layers	1	2	4	2	4	6	4	4
Nominal Thickness, mm	0.25	0.50	1.00	0.50	1.00	1.50	1.00	1.00
Pore former, vol%	0	0	0	30	30	30	25	0
Sintering conditions	1400 °C for 2 h		1400 °C for 2 h					
Measured porosity, %	6.2 ±1.0	6.3 ±1.5	5.7 ±1.2	_	22.8 ±1.1	-	19.8 ±0.9	6.8 ±0.3

Young's and Shear Moduli

Impulse Excitation Technique (ASTM C1259-98)

$$E_{t,f} = \frac{\left[37.699 f_{t,f}^2 D^2 m \left(1 - \mu^2\right)\right]}{K_{t,f}^2 h^3}$$

 E_{tf} = Young's modulus as measured by torsional/flexural resonance m = mass of the disc

t = height of the disc

D = diameter of the disc F_{t,f} = fundamental torsional/flexural resonant frequency of the disc

K, = a correction factor (ASTM C1259-98)

μ = Poisson's ratio

Young's and Shear Moduli

8mol%YSZ as a function of porosity

*A. Selcuk and A. Atkinson, J. Euro. Ceram. Soc., 17 (1007) p.1523

Young's and Shear Moduli

75mol%NiO/YSZ as a function of porosity

*A. Selcuk and A. Atkinson, J. Euro. Ceram. Soc., 17 (1007) p.1523

Thermogravimetric Analysis (TGA) of NiO/YSZ Reduction

Reduction of NiO measured for different samples. Samples were reduced for a different period of time at 800°C in 4%H2-96%Ar gas mixture

Young's and Shear Moduli vs. wt% of Reduced NiO in Anode

What information is needed to predict infancy failures of SOFCs?

Stress Distribution

- Geometry
- Temperature Distribution
- Mechanical Loads
- Boundary Conditions
- Elastic Constants ←
- Volumetric Changes ←
- Thermal Expansion

- porosity
- temperature

Volumetric Changes due to reduction

Reliability/Probability of Failure

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Distribution of Strengths

Strength as a function of:

- porosity
- temperature
- size

Toughness

interfacial

Thermal Expansion of NiO/8YSZ

Thermal Expansion of 8YSZ

What information is needed to predict infancy failures of SOFCs?

Stress Distribution

- Geometry
- Temperature Distribution
- Mechanical Loads
- Boundary Conditions
- Elastic Constants ←
- Volumetric Changes ←
- Thermal Expansion

Elastic Constants as a function of:

- porosity
- temperature

Volumetric Changes due to reduction

Reliability/Probability of Failure

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Distribution of Strengths

Strength as a function of:

- porosity
- temperature
- size

Toughness

interfacial

Ring-on-ring Testing (ASTM C1499-01)

$$\sigma_{f} = \frac{3F}{2\pi h^{2}} \left[(1-v) \frac{D_{s}^{2} - D_{l}^{2}}{2D^{2}} + (1+v) \ln \frac{D_{s}}{D_{l}} \right]$$

where F is breaking load, h sample thickness, v is Poisson's ratio and D, Ds and Dl are diameter of sample, supporting ring and loading ring, respectively

NiO/8YSZ – Weibull plots

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

b2=18.8243, h2=44.7583

NiO/YSZ - Weibull plots

NiO/YSZ – Summary of Weibull statistics

Characteristic strength (MPa) / W	eibull modulus A	verage strength ±	Standard Deviation (MPa)
	NiO/YSZ	2	
# layers -Pore former/Porosity, %	2 - 30/23	4 - 30/23	6 - 30/23
Room Temperature	105.9 / 3.5 95.3 ± 27.2	111.3 / 16.5 107.3 ± 10.8	90.6 / 3.3 80.8 ± 32.1
Ni	/YSZ (Fully reduc	ed NiO/YSZ)	
# layers-Pore former/Porosity, %	-	4 - 30/41	-
Room Temperature	-	44.7 / 18.7 43.5 ± 2.9	-
	NiO/YSZ		
# layers-Pore former/Porosity, %	4 - 0/7	4 - 25/20	2, 4 and 6 - 30/23
Room Temperature	134.6 / 8.6 127.4 ± 17.3	93.3 / 9.4 88.5 ± 11.4	79.6 / 3.4 - 115.4 / 17.4 65.4 ± 25.3 - 111.6 ± 7.6
800oC	152.3 / 5.8 140.9 ± 28.6	98.9 / 7.0 92.6 ± 15.1	-

8YSZ – Weibull plots

8YSZ - Summary Weibull Statistics

8mol%YSZ	Characteristic strength (MPa) / Weibull modulus Average strength ± Standard Deviation (MPa)			
Number of layers	1	2	4	
Room Temperature	345.3 / 4.2 313.7 ± 84.8	182.4 / 4.8 166.4 ± 45.4	222.2 / 3.7 201.5 ± 56.5	
600°C	-	-	131.5 / 4.4 127.10 ± 29.4	
800°C	208.9 / 5.9 193.9 ± 38.8	175.4 / 8.2 166.2 ± 25.6	160.5 / 4.3 145.5 ± 41.1	

Fracture Toughness

Double Torsion Testing

$$K_{I} = PW_{m} \left[\frac{3(1+\nu)}{Wt^{4}\xi} \right]^{1/2}, \xi = 1-1.26(t/W) + 2.4(t/W) \exp[-\pi W/(2t)]$$

Precracked @ 0.02 mm/min and tested @ 1 mm/min

4 layers	8YSZ	NiO/YSZ
K _{IC} , MPa m ^{1/2}	1.65 ± 0.02	1.04 ± 0.13

Implications of stochastic nature of strength

Implications of stochastic nature of strength

If a specimen of size V_o has average strength σ_o , then

Impact of Stochastic Strength on Manufacturing Decisions

Instead of building large cells, which are weaker than smaller cells, why not using a <u>larger</u> number of <u>smaller</u> cells to cover the same surface area?

Impact of Stochastic Strength on Manufacturing Decisions

Future Work

- Complete implementation of methodology to predict reliability of model system (geometry, materials).
- Verification of stress predictions using Raman spectroscopy.
- Determination of fracture toughness and adhesion strength of thin coatings.
- Effect of thermal cycling on reliability and durability
- Long-term reliability
- Compositional Analysis and Micromechanical Modeling

Compositional Analysis and Micromechanical Modeling

Compositional Analysis and Micromechanical Stress Modeling

