Compressive Seal Development: Combined Ageing and Thermal Cycling

Y-S Matt Chou, Jeffry W. Stevenson and Prabhakar Singh

Pacific Northwest National Laboratory Richland, WA 99352

January 27-28, 2005, Tampa FL. SECA Core Technology Program Review

Outline

- Status of mica-seal development
- Technical challenges
- Current work objective
- Results of combined ageing and thermal cycling
- Interlayer of G18 glass
- Problem of G18 glass
- Interlayer of modified G18 glass (G18m)
- > Interlayer of other glass with low B_2O_3
- Interlayer of Ag foil
- Issue of long-term Ag volatilization
- Summary and conclusion
- Future work

Current status of compressive seal

Final goals: >40,000 hrs stability >10² or 10³ thermal cycle No degradation to mating mat'l Low stresses Low cost in SOFC stack

Hybrid micas survived 800°C 2000hr, 34 cycles @12 psi 0.03-0.04 sccm/cm @0.2psi

Hybrid micas survivedHybrid micas showed low Leakage @ 6 psi and Nernst OCV88 cycles@12.5 psi

Hybrid micas survived 1026 thermal cycle between ~100°C - 800°C, ~2.7%H₂/Ar+3% H₂O and 100 psi

Glass-mica composites

Infiltrated micas

Hybrid micas

Plain mica paper

Plain Muscovite mica (monolithic)

Technical challenges for compressive mica seals

- Does the hybrid mica seal have long-term (40,000 hrs) mechanical, thermal, and chemical stability in SOFC environments of high humidity, ~40% ?
- Combined ageing and thermal cycling stability?
- Will the compressive stresses evenly distributed through multiple cells in actual SOFC stacks?
- Will the compressive stresses cause undesirable creep or plastic deformation and degradation of the metallic stack components?
- Will hybrid mica seals survive long-term thermal cycling (10²-10³ cycles) in SOFC environments and still maintain low leak rates?
- How low can the applied compressive load be?
- Will they survive thermal cycling with temperature gradients?

Current work objective

The objective was to evaluate the combined ageing and cycling effect on hybrid Phlogopite mica seals with respect to materials and interfacial degradations in a simulated SOFC environment.

Hybrid Phlogopite mica

Pacific Northwest National Laboratory U.S. Department of Energy 6

Experimental: ageing and short-term thermal cycling

time

Phlogopite micas

PH-A: cogebi, cogemica

PH-B: McMaster-Carr

Pacific Northwest National Laboratory U.S. Department of Energy 8

Combined ageing and thermal cycling of hybrid mica with G18 glass interlayers

Inc/G18/PH-A or PH-B/G18/8YSZ @ 6psi with flowing ~2.7%H₂/Ar+~3% H₂O

800°C ageing

Battelle

thermal cycling

PH-A: Cogebi, cogemica, PH-B: McMaster Carr

fracture surface of aged and cycled hybrid mica with G18 glass interlayer

PH-A Mica 31 cycles No ageing

PH-A Mica 1036hrs 21 cycles

Cross-section of aged and cycled hybrid mica with G18 glass

Pressed @6psi after 1036 hrs ageing and 21 cycles

- Fracture occurred along with the G18 glass near the Inconel600 side
- Thick G18 glass showed undesirable porous microstructure

Reaction of G18 with mica

Approaches to minimize mica degradation

- Promote crystallization more rapidly in the G18 (Ba-Ca-Al silicate) by adding nucleation agent
- ► Use less reactive glass G-M (less B_2O_3)
- Use of non reacting metallic foils (Ag)

Ageing and thermal cycling of hybrid mica with modified G18m glass interlayers

Inconel/G18m/PH8/G18m/CT SS430 @6psi

Rapid increase in leakage suggests fracture through G18m interlayer near Inconel

fracture surface of aged and cycled hybrid mica with G18m glass

Inconel/G18m/PH8/G18m/CT SS430 @6psi, 800°C 1012hrs and 6 cycles

fracture surface of aged and cycled hybrid mica with G18-M glass

Inconel/G18m/PH8/G18m/CT SS430 @6psi, 800°C 1012hrs and 6 cycles

on the fracture surface crystallized interlayer glass

underneath the fracture surface Intact mica flake

Ageing and thermal cycling of hybrid mica with glass of low B₂O₃ (G-M) interlayers

GM glass contains lower B₂O₃ than G18 (Ba-Ca-Al silicate)

800°C ageing

Battelle

thermal cycling

fuel loss = 0.6 % @0.06 sccm/cm, 0.2 psid, 0.7V, 0.5 W/cm², 800°C, 80% fuel utilization of pure hydrogen of a 6"x6" SOFC cell

SECA target: fuel loss <1% @ 0.1 psid after 10 thermal cycles for 6"x6"

fracture surface of aged and cycled hybrid mica with G-M glass

800°C/1000hr, 34 cycled @6psi

No degradation of mica with glass G-M

Inconel/GM/PH8/GM/CT SS430 @ 6psi after 1000 hrs 800°C and 34 cycles

No reaction of Phlogopite mica with glass G-M Lower leakage vs cycling likely due to denser G-M microstructure

Concerns when using glass interlayers with metals of high CTE

- Very high residual stresses (~300 MPa) from CTE mismatch between Inconel600, 16.7 ppm/°C and crystallized G18, 11~12 ppm/°C.
- The interlayer has to be thin and dense

Ageing and thermal cycling of hybrid mica with Ag interlayers

Inconel/Ag/Phlogopite/Ag/8YSZ @12psi

fuel loss = 0.4 % @0.04 sccm/cm, 0.2 psid, 0.7V, 0.5 W/cm², 800°C, 80% fuel utilization of pure hydrogen of a 6"x6" SOFC cell

Battelle

SECA target: fuel loss <1% @ 0.147 kPa (0.1 psid) after 10 thermal cycles for 6"x6"

Issue of vaporization loss of Ag

From Meulenberg etal J. Mater. Sci., 36 [6] 3189-3195 (2001)

690°C/air: 0.094 μg/cm²/h 790°C/air: 1.29 μg/cm²/h 800°C/Ar/H₂/H₂O: 0.161 μg/cm²/h 2.16% @40,000hrs 28.7% @40,000 hrs 2.33% @40,000 hrs

> Pacific Northwest National Laboratory U.S. Department of Energy 22

Insignificant loss of Ag in hybrid mica assembly @ 790-800°C

For a width (W) = 0.5 cm ρ(Ag) = 10.5 g/cc

Ag loss on fuel side =40,000(aTL)/(ρTWL) = 0.12%

Ag loss on air side =40,000(bTL)/(ρTWL) = 0.98%

- Ag loss from free exposed edges
- No reaction of H₂ and O₂ by diffusion through lattice
- No diffusion loss to metals

Summary and conclusion

- Hybrid mica with G18 glass interlayers showed severe reaction during ageing and led to poor thermal cycle stability.
- Three approaches to minimize the reaction of interlayer glass with mica were proposed: G18m, G-M, metallic foils.
- Interlayer of modified G18m showed good chemical compatibility with mica for 1000 hrs, but poor thermal cycle stability.
- Interlayer of glass G-M of low B₂O₃ also demonstrated good chemical compatibility over 1000hrs, and thermal cycle stability of leakage ~0.06 sccm/cm over 35 cycles @ 6psi. Fuel loss <0.6%.</p>
- Interlayers of Ag foil exhibited good thermal cycle stability over 2000 hrs with leakage of ~0.04 sccm/cm over 47 cycles @ a compressive stress of 12 psi. Fuel loss <0.4%.</p>
- Calculation of vapor loss of Ag at 790-800°C showed minute (~1 wt%) loss for 40,000 hrs; however, the effect of Ag on I-V performance/degradation remains to be verified.

Future work

- Finish ongoing ageing and short-term cycling tests in pure hydrogen fuels
- Post-mortem microstructure and interfacial degradation characterization
- Study the effect of SOFC environment (high water content) on the degradation of candidate sealants
- Development of new novel seals with tailored nanomicrostructure and engineered interfacial structure for optimum strength and leakage

Possible degradations of hybrid mica during ageing with glass inter-layers

