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Technical Issues
Fuel Processing for Fuel Cells – Hydrogen Production

• Fuel cells operate on hydrogen rich mixtures best
• Hydrogen rich leads to highest power density in fuel cell
• Cost of SOFC is high, lower cost SOFC system is potentially highest power density 
SOFC stack

• Partial Oxidation / steam reforming
• Steam reforming requires water
• Partial oxidation less efficient that SR
• Combination of POx/SR leads to ATR (autothermal reforming)

• Durability
• Carbon formation
• Sulfur tolerance
• Repeated cycling
• Operational hours (400,000(?))

• Cost
• Understand parameters that affect fuel processor lifetime and durability.
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Fuel Processing Systems
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ATR Reactions
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Partial Oxidation (POx) - Rich fuel burn (exothermic):
oxygen / carbon ratio (oxygen from air only) (O/C = 1)
CnH(2n+2) + (n/2)O2 --> nCO + (n+1)H2
(O/C < 1)
CnH(2n+2) + (m/2)O2 --> mCO + C(n-m)H2(n-m) + H2

Steam Reforming (endothermic):
Steam / carbon ratio (S/C = 1)
CnH(2n+2) + nH2O nCO + (2n+1)H2

Couple POx (exotherm) and Steam Reforming (endotherm) for ATR 
(Autothermal reforming)
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Potential Applications of Diesel Refomers in 
Transportation Systems
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The reforming of diesel fuel potentially has simultaneous on-board vehicle applications:
• fuel for SOFC / APU
• reductant for lean-burn engines catalyzing NOx reduction
• Hydrogen addition to the fuel charge allowing high engine EGR 
• fast light-off and heating of engine / catalytic convertor

Incorporation into vehicles may require reforming to be suitable for all of the concurrent 
applications even though the requirements and applications can be significantly different.
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Objectives and Tasks
Objectives:
• Develop technology for reforming of diesel fuel for APU applications.

• Fuel/air mixing, catalytic partial oxidation / steam reforming
• Understand parameters that affect fuel processor lifetime and durability.

• Catalyst durability
• Carbon formation and system durability

Tasks:
• Measurement of Carbon Formation in Diesel Fuel Processing

• Equilibrium and component modeling
• Experimental carbon formation measurement

• Fuel Mixing
•Vaporization / Fuel atomization
• Direct liquid injection

• ‘Waterless’ Partial Oxidation of Diesel Fuel
• Start-up
• SOFC anode recycle (water addition to reformer)
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Carbon Formation Issues
• Avoid Fuel Processor Degradation due to Carbon Formation

• Operation in non-equilibrium Carbon formation regions
• High temperatures / Steam Content – limits efficiency (80 %)
• Promoted catalysts

• Operation for maximum efficiency
• minimization of O/C and S/C as possible (CH4, C limits)
• 100 % fuel conversion

• Start-up
• Rich start-up

• Cannot avoid favorable carbon equilibrium regions
• Water-less (Water not expected to be available at start-up)

• Diesel fuels
• carbon formation due to pyrolysis upon vaporization
• pre-ignition of fuel

• Transient operation & fuel processor control
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Modeling of Carbon Formation Disappearance
for Different Fuel Compositions

100.0

200.0

300.0

400.0

500.0

600.0

700.0

0.5 1 1.5 2 2.5 3 3.5
Steam to Carbon Ratio

C
ar

bo
n 

D
is

ap
pe

ar
an

ce
 T

em
pe

ra
tu

re

O/C = 0.6 (Cetane = 50, P = 30)

O/C = 0.8 (Cetane = 50, P = 30)

O/C = 1.0 (Cetane = 50, P = 30)

O/C = 1.2 (Cetane = 50, P = 30)

O/C = 0.6 (Cetane = 50, P = 14.7)

O/C = 0.6 (Gasoline, P = 30 psi)

O/C = 0.8  (Gasoline, P = 30 psi)

O/C = 1.0 (Gasoline, P = 30 psi)

O/C = 1.2 (Gasoline, P = 30 psi)

O/C = 0.8 (Gasoline, P = 14.7 psi)

• Carbon formation varies greatly with steam content, only slightly with pressure and cetane #.
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Ternary Diagrams
• Equilibrium Calculations

• Pressure  Dependence
• Temperature Dependence
• Fuel composition
• Steam Content
• Air content
• Carbon product

= steam (H2O)

Pure C

Pure H

= diesel fuel

Pure O= diesel, steam, air mixture
(O/C = 1.0, S/C = 2.5)

= diesel mix (O/C = 1.0, S/C = 1.0)

= diesel mix (O/C = 1.0, S/C = 0.5)

= diesel mix (O/C = 1.0, S/C = 0.0)

Lower O/C more efficient fuel reformation
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Carbon Equilibrium (450 oC)
Pressure  14.7 to 30 psi
Temperature 450 oC
--x-- = amorphous carbon
--x-- = graphite
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Carbon Equilibrium (270 oC)
Pressure  14.7 to 30 psi
Temperature 270 oC
--x-- = amorphous carbon
--x-- = graphite

Carbon formation
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Carbon Formation Monitoring Laser Optics
(adiabatic POx/SR reactor)
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• Laser extinction 
measurements monitor on-
set of carbon

• Laser scattering quantifies 
carbon formation

• Fluorescence indicates 
PAHCs
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Carbon Formations Diagnostics
MDL ~ 0.6 mg/min.

Detection 
Electronics
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Technical Results:
Carbon formation measurements

Results
• Partial oxidation of 

• odorless kerosene
• kerosene
• dodecane
• hexadecane

• Carbon formation 
monitoring by laser optics
• Carbon formation shown 
at low relative O/C ratios 
and temperature with 
kerosene (left)
• Demonstrated start-up 
with no water – carbon 
formation observed after ~ 
100 hrs of operation

Carbon formation monitoring with laser scattering
Odorless Kerosene; S/C = 1.0
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Carbon Formation:
Pressure Drop
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• Carbon formation observed upon vaporization of diesel fuel due to fuel pyrolysis.
• Partial oxidation of diesel fuels without water has been demonstrated, however carbon 
formation occurs rapidly - in ~7 – 8 hours a prohibitive pressure drop resulted.
• Laser optics being used to observe the onset of carbon formation.
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Carbon Analysis
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TGA-thermogravimetric analysis

Carbon formed in SR

Carbon formed after SR
30 % by weight Hydrocarbons
Material is solidified 
hydrocarbon compounds
No initial weight loss

Initial weight loss of 1.7%
Estimate amorphous carbon as:
C1H0.2
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Catalyst Regeneration:
oxidative removal of carbon

• Post-carbon formation experiments:
• Regeneration of catalyst/reactor by carbon oxidation
• Air feed to reactor at 500 – 600 oC
• Similar to regenerative particulate filters

• Successful about ~5 times in succession
• Control of the reactor temperature could be difficult.  
• For large carbon build-up:

• Subsequent oxidation of the carbon yielded high 
adiabatic temperatures

• Eventually disables light-off of the partial oxidation stage
• Due to catalyst sintering - loss of catalyst surface area.

• Catalyst regeneration
• Potential solution to carbon formation
• Need to control oxidation temperature/rate of oxidation
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Partial Oxidation Stage Outlet Concentrations
(for similar conversions)
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Higher O/C (temperature) required for Dodecane conversion
yields diluted H2/CO fuel mixture
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Fuel Effect on Auto – Ignition (Pre-Combustion)

Switched Fuel Operation: De-odorized Kerosene to Normal Kerosene
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• Diesel fuels show high tendency for pre-combustion
• Show fuel effect on pre-combustion
• Potential design impacts of seasonal diesel fuels
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Fuel Injection to POx/SR
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Diesel fuel components tend pyrolyse upon vaporization

Direct fuel injection
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Our approach is to examine the direct injection of diesel fuel into reactor.  
• Fuel nozzle for direct fuel injection
• High pressure / flash vaporization
• Reduce residence time before fuel is oxidized
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• Catalytic oxidation / reforming
• Diesel Fuel Components (Dodecane)

• Long chained hydrocarbons require higher residence time for conversion
• aromatics slow and inhibit overall reaction rate

•Pre-combustion
• Diesel fuels much more likely for pre-combustion

• Differences in pre-combustion with fuel components (kerosene)
•Carbon Formation

• Equilibrium carbon formation modeling
• Equilibrium varies greatly with air/steam content, slightly with pressure and

cetane #.
• Diesel fuels show high tendency for pyrolysis
• Hysteresis observed after on-set of carbon formation
• Greater carbon formation with aromatics

•Regeneration of catalysis for limited number of cycles
• Carbon content / oxygen content control to prevent ‘catastropic’ temperature rise

Technical Progress Summary/Findings
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On-Going / Future Work
• Diesel fuel/air mixing

• Durability testing of fuel processing components 
• Carbon formation during start-up and reactor transients

• Carbon formation fundamentals:
• Sulfur effect on carbon formation
• Delineate carbon formation mechanisms
• Kinetic expressions for carbon formation

• Catalyst Regeneration
• Oxidative regeneration of reforming catalysts

• Expand equilibrium modeling to incorporate other carbon species
• carbon with H/C ratio ~ 0.2
• PAHC (poly aromatic hydrocarbons)
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