Diesel Reforming and Carbon Formation Measurements

2002 SECA Core Technology Meeting June 18, 19 Pittsburg, PA

Rod Borup, Jerry Parkinson, Mike Inbody, Troy Semelsberger and Jose Tafoya Los Alamos National Laboratory

DOE Program Managers

SECA – Norman Holcombe/Wayne Surdoval (OAAT – JoAnne Milliken/Pete Devlin) CIDI – Kathi Epping (NOx reduction)

POC: Rod Borup:Borup@lanl.gov - (505) 667 - 2823

Fuel Cell Program

Los Alamos

Technical Issues

Fuel Processing for Fuel Cells – Hydrogen Production

- Fuel cells operate on hydrogen rich mixtures best
 - Hydrogen rich leads to highest power density in fuel cell
 - Cost of SOFC is high, lower cost SOFC system is potentially highest power density SOFC stack
- Partial Oxidation / steam reforming
 - Steam reforming requires water
 - Partial oxidation less efficient that SR
 - Combination of POx/SR leads to ATR (autothermal reforming)
- Durability
 - Carbon formation
 - Sulfur tolerance
 - Repeated cycling
 - Operational hours (400,000(?))
- Cost
- Understand parameters that affect fuel processor lifetime and durability.

Fuel Processing Systems

SOFC Fuel Cell System

Fuel Cell Program

ATR Reactions

Partial Oxidation (POx) - Rich fuel burn (exothermic):

oxygen / carbon ratio (oxygen from air only) (O/C = 1)

$$C_nH_{(2n+2)} + {}_{(n/2)}O_2 \longrightarrow nCO + {}_{(n+1)}H_2$$
(O/C < 1)

$$C_n H_{(2n+2)} + {}_{(m/2)}O_2 --> mCO + C_{(n-m)}H_{2(n-m)} + H_2$$

Steam Reforming (endothermic):

Steam / carbon ratio (S/C = 1)

$$C_nH_{(2n+2)} + nH_2O \rightarrow nCO + (2n+1)H_2$$

Couple POx (exotherm) and Steam Reforming (endotherm) for ATR (Autothermal reforming)

Fuel Cell Program

Potential Applications of Diesel Refomers in Transportation Systems

The reforming of diesel fuel potentially has simultaneous on-board vehicle applications:

- fuel for SOFC / APU
- reductant for lean-burn engines catalyzing NOx reduction
- Hydrogen addition to the fuel charge allowing high engine EGR
- fast light-off and heating of engine / catalytic convertor

Incorporation into vehicles may require reforming to be suitable for all of the concurrent applications even though the requirements and applications can be significantly different.

Objectives and Tasks

Objectives:

- Develop technology for reforming of diesel fuel for APU applications.
 - Fuel/air mixing, catalytic partial oxidation / steam reforming
- Understand parameters that affect fuel processor lifetime and durability.
 - Catalyst durability
 - Carbon formation and system durability

Tasks:

- Measurement of Carbon Formation in Diesel Fuel Processing
 - Equilibrium and component modeling
 - Experimental carbon formation measurement
- Fuel Mixing
 - Vaporization / Fuel atomization
 - Direct liquid injection
- 'Waterless' Partial Oxidation of Diesel Fuel
 - Start-up
 - SOFC anode recycle (water addition to reformer)

Carbon Formation Issues

- Avoid Fuel Processor Degradation due to Carbon Formation
 - Operation in non-equilibrium Carbon formation regions
 - High temperatures / Steam Content limits efficiency (80 %)
 - Promoted catalysts
- Operation for maximum efficiency
 - minimization of O/C and S/C as possible (CH₄, C limits)
 - 100 % fuel conversion
- Start-up
 - Rich start-up
 - Cannot avoid favorable carbon equilibrium regions
 - Water-less (Water not expected to be available at start-up)
- Diesel fuels
 - carbon formation due to pyrolysis upon vaporization
 - pre-ignition of fuel
- Transient operation & fuel processor control

Modeling of Carbon Formation Disappearance for Different Fuel Compositions

• Carbon formation varies greatly with steam content, only slightly with pressure and cetane #.

Ternary Diagrams

- Equilibrium Calculations
 - Pressure Dependence
 - Temperature Dependence
 - Fuel composition
 - Steam Content
 - Air content
 - Carbon product
- = diesel fuel
- \bullet = steam (H₂O)
- = diesel, steam, air mixture (O/C = 1.0, S/C = 2.5)
- \bullet = diesel mix (O/C = 1.0, S/C = 1.0)
- = diesel mix (O/C = 1.0, S/C = 0.5)
- \circ = diesel mix (O/C = 1.0, S/C = 0.0)

Lower O/C more efficient fuel reformation

Carbon Equilibrium (450 °C)

Carbon Equilibrium (270 °C)

Carbon Formation Monitoring Laser Optics

(adiabatic POx/SR reactor)

Carbon Formations Diagnostics

MDL ~ 0.6 mg/min.

$$\tau = \frac{I_t}{I_0} = \exp(-K_{ext} \cdot L)$$
 = Laser Transmission

 $I_t = Transmitted Intensity$

 $I_0 = Incident Intensity$

L = Path Length

$$K_{ext} = \frac{1}{L} \ln(\tau)$$

$$K_{ext} = \frac{1}{L} \ln(\tau)$$

$$f_{v} = -\frac{\lambda}{6\pi} \left[\operatorname{Im} \left\{ \frac{\widetilde{m}^{2} - 1}{\widetilde{m}^{2} + 2} \right\} \right] \cdot K_{ext} = -\frac{\lambda}{6\pi L} \left[\operatorname{Im} \left\{ \frac{\widetilde{m}^{2} - 1}{\widetilde{m}^{2} + 2} \right\} \right] \cdot \ln(\tau)$$

 $\tilde{m}^2 \equiv \text{Complex Index of Refraction}$

Technical Results: Carbon formation measurements

Carbon formation monitoring with laser scattering Odorless Kerosene; S/C = 1.0

Fuel Cell Program

Results

- Partial oxidation of
 - odorless kerosene
 - kerosene
 - dodecane
 - hexadecane
- Carbon formation monitoring by laser optics
- Carbon formation shown at low relative O/C ratios and temperature with kerosene (left)
- Demonstrated start-up with no water – carbon 1 formation observed after ~ 100 hrs of operation • Los Alamos

Carbon Formation: Pressure Drop

Fuel: Kerosene

S/C = 0

Light-off and operation

without

water feed to POx

Reactor pressure drop increases over time due to carbon formation

- Carbon formation observed upon vaporization of diesel fuel due to fuel pyrolysis.
- Partial oxidation of diesel fuels without water has been demonstrated, however carbon formation occurs rapidly in \sim 7 8 hours a prohibitive pressure drop resulted.
- Laser optics being used to observe the onset of carbon formation.

Carbon Analysis

Initial weight loss of 1.7% Estimate amorphous carbon as: $C_1H_{0.2}$

30 % by weight Hydrocarbons Material is solidified hydrocarbon compounds No initial weight loss

TGA-thermogravimetric analysis

Los Alamos

Fuel Cell Program

Catalyst Regeneration: oxidative removal of carbon

- Post-carbon formation experiments:
 - Regeneration of catalyst/reactor by carbon oxidation
 - Air feed to reactor at 500 600 °C
 - Similar to regenerative particulate filters
- Successful about ~5 times in succession
 - Control of the reactor temperature could be difficult.
 - For large carbon build-up:
 - Subsequent oxidation of the carbon yielded high adiabatic temperatures
- Eventually disables light-off of the partial oxidation stage
 - Due to catalyst sintering loss of catalyst surface area.
- Catalyst regeneration
 - Potential solution to carbon formation
 - Need to control oxidation temperature/rate of oxidation

Partial Oxidation Stage Outlet Concentrations

(for similar conversions)

Higher O/C (temperature) required for Dodecane conversion yields diluted H₂/CO fuel mixture

Fuel Cell Program

Fuel Effect on Auto – Ignition (Pre-Combustion)

- Diesel fuels show high tendency for pre-combustion
- Show fuel effect on pre-combustion
- Potential design impacts of seasonal diesel fuels

Switched Fuel Operation: De-odorized Kerosene to Normal Kerosene

Fuel Injection to POx/SR

Diesel fuel components tend pyrolyse upon vaporization

Our approach is to examine the direct injection of diesel fuel into reactor.

- Fuel nozzle for direct fuel injection
- High pressure / flash vaporization
- Reduce residence time before fuel is oxidized

Technical Progress Summary/Findings

- Catalytic oxidation / reforming
 - Diesel Fuel Components (Dodecane)
 - Long chained hydrocarbons require higher residence time for conversion
 - aromatics slow and inhibit overall reaction rate
- Pre-combustion
 - Diesel fuels much more likely for pre-combustion
 - Differences in pre-combustion with fuel components (kerosene)
- Carbon Formation
 - Equilibrium carbon formation modeling
 - Equilibrium varies greatly with air/steam content, slightly with pressure and cetane #.
 - Diesel fuels show high tendency for pyrolysis
 - Hysteresis observed after on-set of carbon formation
 - Greater carbon formation with aromatics
- Regeneration of catalysis for limited number of cycles
 - Carbon content / oxygen content control to prevent 'catastropic' temperature rise

On-Going / Future Work

- Diesel fuel/air mixing
 - Durability testing of fuel processing components
 - Carbon formation during start-up and reactor transients
- Carbon formation fundamentals:
 - Sulfur effect on carbon formation
 - Delineate carbon formation mechanisms
 - Kinetic expressions for carbon formation
- Catalyst Regeneration
 - Oxidative regeneration of reforming catalysts
- Expand equilibrium modeling to incorporate other carbon species
 - carbon with H/C ratio ~ 0.2
 - PAHC (poly aromatic hydrocarbons)

