# Factors Governing Performance of Mixed-Conducting SOFC Cathodes

Jamie R. Wilson, Lilya Dunyushkina, Yunxiang Lu, <u>Stuart B. Adler</u> University of Washington, Department of Chemical Engineering

SECA Core Technology Program
January, 2005

#### Support

- -DOE/NETL SECA Core Technology Program
- -NSF
- -Ford Foundation

## Motivation: How do we understand and improve processes limiting cathode performance?



## Our Approach

- Advanced Measurement and Modeling Tools
  - Quantitative analysis of impedance data.
  - Measurement and modeling of nonlinear harmonics.
  - Microelectrodes for improved half-cell measurements.
- Studies of Porous and Dense Mixed-conductors on Samaria-Doped Ceria (SDC)
  - Common interface in composite/2-layer electrodes.
  - Less reaction between electrode and SDC than YSZ
  - Good model systems.

#### **Outline**

- Electrochemical Behavior of Porous Electrodes
  - Role of chemical and transport steps in oxygen reduction.
  - Why chemical and transport steps tend to be co-limiting.
  - How this behavior appears in impedance (faradaic capacitance).
- Studies of La<sub>1-x</sub>Sr<sub>x</sub>CoO<sub>3-δ</sub> on samaria-doped ceria (SDC)
  - Role of interface vs. chemical and transport steps
  - Dependence on processing and operating conditions
  - What we can tell about possible mechanisms.
  - What steps are most sensitive to degradation, polarization, other unknown variables.
- Conclusions/Recommendations

## Role of Chemical and Transport Steps in Oxygen Reduction



The length of three-phase boundary is inadequate information to explain the kinetics of SOFC cathodes.

# Role of Chemical and Transport Steps in Oxygen Reduction



# Role of Chemical and Transport Steps in Oxygen Reduction



## Why Chemical and Transport Steps Tend to be Co-Limiting in Porous Catalysts

#### Porous Catalyst Particle



Thiele Modulus:  $\phi = \frac{R}{3} \sqrt{\frac{k_{A}a}{D_{A}}}$ 

#### Steady-State Concentration



co-limited  $rate \sim R^2 c_{A0} \sqrt{k_A a D_A}$ 

Reduction of A to A



#### At Equilibrium



Reduction of A to A



#### **Under Polarization**



Reduction of A to A





#### Reduction of A to A<sup>-</sup>







#### Reduction of A to A<sup>-</sup>









#### Reduction of A to A<sup>-</sup>







Reduction of A to A











## Separating Chemical & Interfacial Timescales











#### Materials of Interest

#### Porous Perovskite Electrodes:



#### Microelectrode Half Cells:





## Role of Firing (Sintering) Temperature





Recall that for co-limiting reaction and transport:

$$R_{chem} \sim 1/\sqrt{akD}$$
  $\omega_{chem} \sim ak$   
 $k \& D \text{ constant: } R_{chem} \sim 1/\sqrt{\omega_{chem}}$ 

#### Surface area reduction?



## Role of Operating Temperature



If:

$$R_{chem} \sim 1/\sqrt{akD}$$

$$\omega_{chem} \sim ak$$

Then:

$$ak \sim \omega_{chem}$$
  $D \sim 1/(\omega_{chem}R_{chem}^2)$ 



At 75 kcal/mol, LSC-82 is not a stellar O<sub>2</sub> catalyst...

## Dependence on Operating $P_{O2}$



If:  $ak \sim \omega_{chem} \sim P_{O_2}^{0.53 \pm 0.08}$ 

Then:  $k \sim P_{O_2}^{1/2}$ 

Oxygen exchange rate 1/2 order in  $P_{O2}$ 



## Several mechanisms are consistent with $k \sim P_{O2}^{-1/2}$

Oxygen exchange limited by vacancy exchange



$$r_{ads} = k_1 \left( \left( P_{O_2}^{gas} \right)^{\frac{1}{2}} - \left( P_{O_2}^{solid} \right)^{\frac{1}{2}} \right)$$

$$k \sim r_{exch} = k_1 \left( P_{O_2} \right)^{\frac{1}{2}}$$

Oxygen exchange limited by dissociative adsorption



$$r_{ads} = k_1 \left( \frac{\left(P_{O_2}^{gas}\right)}{\left(P_{O_2}^{solid}\right)^{\frac{1}{2}}} - \left(P_{O_2}^{solid}\right)^{\frac{1}{2}} \right)$$

$$k \sim r_{exch} = k_1 \left( P_{O_2} \right)^{\frac{1}{2}}$$

Same!

## Nonlinear Electrochemical Impedance Spectroscopy (NLEIS) example: LSF/ceria/LSF cell at 750°C in air (10 Hz)









## Nonlinear Electrochemical Impedance Spectroscopy



### Nonlinear Electrochemical Impedance Spectroscopy



## **Electrode Degradation**







#### Other observations:

- humidity dependence
- reverse direction in dry gas
- depends on test furnace?

Suggests surface kinetics are very sensitive to environment.

## Dependence of the Interface on Electrolyte Polishing



Polishing of SDC prior to electrode processing degrades performance.

Electrode adhesion is noticeably worse if SDC is polished.



Re-firing of SDC surface before processing LSC recovers performance.

#### **Polarization Effects**



#### Conclusions

- For La<sub>0.8</sub>Sr<sub>0.2</sub>CoO<sub>3-δ</sub> on SDC, optimum performance is achieved when electrode firing temperature is sufficient to achieve bonding/connectivity, but not so high as to lose active surface area.
- The best performing electrodes are generally co-limited by dissociative adsorption and surface/bulk transport. LSC is not a very good oxygen reduction catalyst (75 kcal/mol).
- Interfacial resistance is sensitive to preparation of the electrolyte and polarization. Oxygen surface kinetics appear sensitive to an number of overlapping factors (humidity, exposure to impurities).

#### **Current Efforts**

- Extending NLEIS measurements to a much wider range of materials and conditions. Currently improving signal-to-noise to obtain finer detail and more information regarding interface.
- At 75 kcal/mol, oxygen dissociative adsorption appears to be the biggest bottleneck with LSC-82. Examining competitive electrocatalysts on the basis of oxygen exchange rates.
- More carefully examining electrode degradation and sensitivity factors. Will quantify the role of humidity, and other gas-born impurities on electrode performance.

