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Motivation: How do we understand and improve 
processes limiting cathode performance?



Our Approach

• Advanced Measurement and Modeling Tools

– Quantitative analysis of impedance data.
– Measurement and modeling of nonlinear harmonics.
– Microelectrodes for improved half-cell measurements.

• Studies of Porous and Dense Mixed-conductors on 
Samaria-Doped Ceria (SDC)

– Common interface in composite/2-layer electrodes.
– Less reaction between electrode and SDC than YSZ
– Good model systems.



Outline
• Electrochemical Behavior of Porous Electrodes

– Role of chemical and transport steps in oxygen reduction.
– Why chemical and transport steps tend to be co-limiting.
– How this behavior appears in impedance (faradaic capacitance).

• Studies of La1-xSrxCoO3-δ on samaria-doped ceria (SDC)
– Role of interface vs. chemical and transport steps
– Dependence on processing and operating conditions
– What we can tell about possible mechanisms.
– What steps are most sensitive to degradation, polarization, other 

unknown variables. 

• Conclusions/Recommendations



Role of Chemical and Transport Steps
in Oxygen Reduction

The length of three-phase boundary is 
inadequate information to explain the 
kinetics of SOFC cathodes. 
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in Oxygen Reduction



Role of Chemical and Transport Steps
in Oxygen Reduction

Chemical & 
Transport Steps

(Slow response time due to 
faradaic accumulation)

C = 10-3 ~ 1 F/cm2

Interfacial
Charge-Transfer
(fast response time)
C = 10-6~10-4 F/cm2



Why Chemical and Transport Steps Tend to be 
Co-Limiting in Porous Catalysts



Co-limited Behavior in Porous Electrocatalysts

Reduction of A to A-
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Co-limited Behavior in Porous Electrocatalysts

Reduction of A to A-

LSCF on ceria, 700°C
(Adler, Lane, Steele, 1996)



Separating Chemical & Interfacial Timescales

Porous Pt on YSZ at 800°C
(A. Mitterdorfer, 1997)

Re(Z,ZF ) (ž -cm2 )

Porous La1-xSrxCoO3-d on SDC
at 700°C



Materials of Interest

Porous Perovskite Electrodes:

electrolyte
Ce0.8Sm0.2O2-x

electrode
La1-xSrxCoO3-δ

Microelectrode Half Cells:

SDC

MgO/spinel

WE
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Role of Firing (Sintering) Temperature

Recall that for co-limiting 
reaction and transport:

Rchem ~ 1 akD ω chem ~ ak
k  & D constant: Rchem ~ 1 ω chem

La0.8Sr0.2O3-δ on SDC at 700°C in air

Fired at 1050°C.

Surface area reduction?



Role of Operating Temperature

La0.8Sr0.2O3-δ fired on SDC at 1050°C
(tested in air)

If:
Rchem ~ 1 akD ω chem ~ ak

ak ~ω chem

Then:
D ~ 1 ω chemRchem

2( )
At 75 kcal/mol, LSC-82 is 
not a stellar O2 catalyst…



Dependence on Operating PO2

La0.8Sr0.2O3-δ fired on SDC at 950°C
(tested at 725°C vs. PO2)

If: ak ~ω chem ~ PO2

0.53±0.08

k ~ PO2

1/2Then:

Oxygen exchange rate 1/2 
order in PO2



Several mechanisms are consistent with k ~ PO2
1/2

Oxygen exchange limited 
by dissociative adsorption

k ~ rexch = k1 PO2( )
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by vacancy exchange
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Same!



example: LSF/ceria/LSF cell at 750°C in air (10 Hz)
Nonlinear Electrochemical Impedance Spectroscopy (NLEIS)

0.4

0.2

0.0

-0.2

-0.4

A
m

pl
itu

de

543210
Time (s)

Gaussian ApodizationTime-domain data

Voltage FFT (magnitude)

1st (5x)

3rd
5th

0.4

0.2

0.0

-0.2

-0.4A
m

pl
itu

de
 (V

, A
)

1.00.80.60.40.20.0
Time (s)

12x10-3

10

8

6

4

2

0

V
ol

ta
ge

 (v
ol

ts
)

806040200
Band ω (Hz)

4x10-3

3

2

1

0

C
ur

re
nt

 (a
m

ps
/c

m
2 )

806040200
Band ω (Hz)

1st (5x)

Current FFT (magnitude)



Nonlinear Electrochemical Impedance Spectroscopy
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Electrode Degradation

La0.8Sr0.2O3-δ on SDC at 725°C in air
(fired at 950°C) Since ,ω chem ~ ak scaling 

suggests changes in surface 
area or surface kinetics. 

Other observations:
• humidity dependence
• reverse direction in dry gas
• depends on test furnace?

Suggests surface kinetics are 
very sensitive to environment.



Dependence of the Interface on Electrolyte Polishing

Polishing of SDC prior 
to electrode processing 
degrades performance.

Electrode adhesion is 
noticeably worse if SDC 
is polished.

Re-firing of SDC surface 
before processing LSC 
recovers performance.



Polarization Effects



Conclusions

• For La0.8Sr0.2CoO3-δ on SDC, optimum performance is achieved 
when electrode firing temperature is sufficient to achieve 
bonding/connectivity, but not so high as to lose active surface area.  

• The best performing electrodes are generally co-limited by 
dissociative adsorption and surface/bulk transport. LSC is not a
very good oxygen reduction catalyst (75 kcal/mol).

• Interfacial resistance is sensitive to preparation of the electrolyte 
and polarization.  Oxygen surface kinetics appear sensitive to an 
number of overlapping factors (humidity, exposure to impurities).



Current Efforts

• Extending NLEIS measurements to a much wider range of 
materials and conditions.  Currently improving signal-to-noise to 
obtain finer detail and more information regarding interface.

• At 75 kcal/mol, oxygen dissociative adsorption appears to be the
biggest bottleneck with LSC-82.  Examining competitive 
electrocatalysts on the basis of oxygen exchange rates.

• More carefully examining electrode degradation and sensitivity 
factors.  Will quantify the role of humidity, and other gas-born 
impurities on electrode performance.



Thank You
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