Novel Methods to Detect Small Leaks over Large Areas

Project Number (FE-890-18-FY18)

Youzuo Lin
Los Alamos National Laboratory

U.S. Department of Energy
National Energy Technology Laboratory
Mastering the Subsurface Through Technology Innovation, Partnerships and Collaboration:
Carbon Storage and Oil and Natural Gas Technologies Review Meeting
August 13-16, 2018
Presentation Outline

- Overview
- Data-Driven Detection Methods
  - Physics-Driven Methods VS Data-Driven Methods
  - Key Ideas
  - Data
  - Results
- Accomplishments to Date
- Lessons Learned
- Synergy Opportunities
- Project Summary
Overview

Novel Methods to Detect **Small** Leaks over **Large** Areas

**Ultimate Goal**

“Detect a leak of 100 g/s (brine or CO₂) within 100 days over an area of 100 km² for 10-year amortized cost of $100k/year.”

**Challenges**

- **Small** and **useful** events buried in noisy and **large-scale** datasets
- **Efficient** method is required to allow early detection
- **Financially effective** method
Hypothesis and Potential Solutions

**Hypothesis**

- **Hypothesis:** There is useful information existing in the data, which is not used by current methods

**Solutions**

- Data-Driven/Machine-Learning Methods
- Test Data
  - Simulations (fluid & flow (LLNL) → Seismic Velocity (NETL) → Seismic Data (LANL))
  - Field data
- Multi-Physics Surface/Subsurface Measurements
  - Seismic
  - Pressure
  - Acoustic
• **Physics-Driven Methods** The governing physics equations are well understood and utilized to describe the underlying physics of the problems of interest.

• **Seismic Monitoring**

\[
E(m) = \min_{m} \left\{ ||d - p(m)||^2_2 + \lambda R(m) \right\}
\]

where \( m \) is the subsurface formation (rock + fluid), \( d \) is the seismic measurement, \( p(\cdot) \) is the forward wave-propagation operator, and \( R(\cdot) \) is the regularization operator.

• **CO\textsubscript{2} leaks will lead to subsurface formation change of \( \delta m \)**
Data-Driven Methods Machine-learning techniques are used to infer the intrinsic correspondence between seismic data and the leakage mass.
Seismic Detection – Key Ideas

- Characteristics of Reflection Seismic Data

2D Seismogram  1D Time Series

- Seismic data contain both spatial- and temporal characteristics
Seismic Detection – Key Ideas

- CO₂ Leakage is **time-dependent accumulated sequential** procedure

- Previous measurements (if available) can be important for current detection
Our **Spatial-Temporal DenseNet (ST-DenseNet)** for CO₂ Leakage Detection

Schematic Illustration of Our Detection Method
Seismic Detection – Model and Test

- **Kimberlina Model**
  - The simulations were generated from Kimberlina model with wellbore leakage dataset
  - This dataset contains multi-phase flow models of wellbore leakage from legacy wells located at 1, 3, and 6 km away from the CO₂ injector
  - Reflection seismic data are generated (3 sources and 100 receivers)
  - Total number of leakage simulations: 2,927 (133 groundwater simulations, 23 time steps, and 1 initial model)

- **Test Scenarios**
  - Scenario 1: Random CO₂ Leakage Test
  - Scenario 2: Sequential CO₂ Leakage Test
  - Scenario 3 & 4: Robustness Test (Noisy Test and Cross-Location Test)
  - Scenario 5: Brine Leakage Test
Seismic Detection - Result

- Scenario 1: Random Leakage Monitoring

![Graph 1: Ground Truth](Ground Truth)

![Graph 2: Detection](Detection)
Seismic Detection - Result

• Scenario 2: Sequential Leakage Monitoring
Seismic Detection - Result

- Scenario 3: Monitoring Using Noisy Data
  - 30 db additive Gaussian noise is imposed
Seismic Detection - Result

- Scenario 3: Monitoring Using Noisy Data
  - 30 db additive Gaussian noise is imposed
Seismic Detection - Result

• Scenario 4: Cross-Location
  – Train model on 2 locations and test on 3rd location

<table>
<thead>
<tr>
<th></th>
<th>1 km</th>
<th>3 km</th>
<th>6 km</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST-DenseNet</td>
<td>79.3%</td>
<td>82.3%</td>
<td>82.6%</td>
<td>81.2%</td>
</tr>
</tbody>
</table>

Kimberlina Site Map
(Image Courtesy of Buscheck et al. 2017.)
Seismic Detection - Result

- Scenario 5: Brine Leak Mass Detection

Ground Truth

Detection
Accomplishments to Date

- **ST-DenseNet:** Our team developed a deep neural network based leakage monitoring method to capture CO$_2$ leakage mass. [Zhou et al. 2018, Zhou et al. 2018 (2)]:
Lessons Learned

Our results show that seismic data contain information about CO₂ gas leakage. Our work is primarily on large leakage, but we have seen information about small leak, which is our future focus.

Incorporation of historical seismic data can be significant in improving detection accuracy.

Robustness tests (noisy and cross location) are important and challenging.

Our results show that seismic yields unsatisfactory detection accuracy for brine leakage.
Synergy Opportunities

- Work with NRAP
- Work with NETL
- LANL institutional and LDRD projects
Project Summary

- Data-driven approaches yield promising detection results.
- Spatial- and temporal information should be both taken into account when using data-driven approaches.
- Results show that historical data can improve effectiveness in data-driven approaches.
Thank you
Appendix

- These slides will not be discussed during the presentation, but are mandatory.
Benefit to the Program

- Our techniques can detect small leaks out of large noisy data.
- Our techniques can extract useful information from different types of data sets.
- All these techniques will be critical to early detection of CO$_2$ leakage.
Project Overview
Goals and Objectives

• Task 2.1—Field-Scale Proof-of-Concept
  – “This task will leverage institutional investments by LANL that allowed acquisition of inexpensive seismoacoustic stations for development and testing of algorithms to search for small signals using large time series datasets.”

• Task 2.2—Strategic Plan for Detection of Atmospheric Leaks
  – “The objective of the sub-task is to develop a strategy for combining both surface and subsurface signals to detect leaks, but FY17 will focus on demonstrating individual components of the overall strategy.”
Gantt Chart

Task 2: Project Timeline Overview

Monitoring for small leaks over large areas post-injection using conventional datasets (Proof of concept phase)

<table>
<thead>
<tr>
<th>2016*</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>O N D J F M A M J J A S</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2017*</th>
</tr>
</thead>
<tbody>
<tr>
<td>$350k</td>
</tr>
<tr>
<td>O N D J F M A M J J A S</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2018*</th>
</tr>
</thead>
<tbody>
<tr>
<td>$400k</td>
</tr>
<tr>
<td>O N D J F M A M J J A S</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2019*</th>
</tr>
</thead>
<tbody>
<tr>
<td>$415k</td>
</tr>
<tr>
<td>O N D J F M A M J J A S</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2020*</th>
</tr>
</thead>
<tbody>
<tr>
<td>$425k</td>
</tr>
<tr>
<td>O N D J F M A M J J A S</td>
</tr>
</tbody>
</table>

**Proof of concept/Method development**

1. Collected field data set for testing extraction of small acoustics signals associated with fluid movement (leakage)
2. **Seismic Images**: Development/testing of machine-learning (ML) method for extracting large-leak signal from synthetic data
3. **Acoustic**: Development/testing of ML method for extracting large-leak signal from acoustic
4. **Pressure**: Development/testing of ML method for extracting large-leak signal from pressure data
5. **Seismic Images**: Testing of ML potential to extract large-leak signal from noisy synthetic seismic images
6. **Pressure**: Testing of ML method for extracting small-leak signal from noisy pressure data
7. **Seismic Images**: Testing of ML potential to extract small-leak signal from synthetic seismic images
8. **Acoustic**: Testing of ML method for extracting small-leak signal from noisy acoustic data
9. Develop multi-data ML integration method
10. Initial testing on real data

**Milestones**

1.
2. 2019
3. 2020

**Chart Key**

- TRL Score
- Go / No-Go Timeframe
- Project Completion
- Milestone

**Go / No-Go**

*Initiate development of multi-data ML integration platform and test/demonstrate on field data?* Decision based on proof-of-concept that analysis of conventional data (seismic ± pressure ± acoustic) could meet performance/cost goals.


