Technology Demonstration of a High-Pressure Swirl Oxy-Coal Combustor

Award No: DE-FE0029113

Presenter: Jad G. Aboud
Graduate Research Associate

Principal Investigator: Ahsan Choudhuri, PhD
Associate Vice President and Director

Collaborator: Hwanho KIM
American Air Liquide
Grant No:
DE-FE-0029113

Project Title:
Technology Demonstration of a High-Pressure Swirl Oxy-Coal Combustor

Investigators:
Ahsan Choudhuri and Norman Love
The University of Texas at El Paso
Chendhil Periasamy
American Air Liquide

Project Period:
10/01/2016 (01/01/2017)-09/30/2019 (12/31/2019)

Project Manager:
Mark Freeman
Agenda

- Introduction and Background
- Objective and Timeline
- Cycle Analysis
- Combustor Design
- Secondary Burner & Ignitor
- Injector Design
- Injector Water Test
- Exhaust System Concept
Introduction & Background
Pressurized Oxy-Coal Combustion

- **Pressurized oxy-coal combustion systems**
 - Improve efficiency by recovering latent heat of the steam in the flue gas
 - Achieve 90% CO2 capture [1]
 - Smaller system size and capital cost due to the reduction of flue gas at higher pressure

- **Swirl burners**[2]
 - Widely used combustion devices
 - Have superior flame holding
 - Higher conversion rate
 - Low pollutant emission characteristics

Proposed Cycles

ThermoEnergy Integrated Power System (TIPS) Cycle[1,2]:
- Proposed and studied by CANMET and Babcock Power
- Contain:
 - Flue Gas Condenser (FGC)
 - Radiative and convective heat exchangers
- Suggested pressure with the benefit of latent heat recovery:
 - CANMET: 80 bar
 - Babcock Power: 20.7 bar

ENEL Cycle[1,2]:
- Based on combustion process patented by ITEA and analyzed by MIT
- No use of radiant heat exchanger
- Most of the latent heat can be recovered at 11 bar

Objectives & Timeline
Objectives

Objective 1: Systems Configuration Analysis of a 1 MW_th Pressurized Oxy-Coal Swirl Combustor
- 550 MW_e TIPS and ENEL pressurized oxy-coal systems with CO2 recirculation modeled with ASPEN PLUS®

Objective 2: Design and Construction of a 1 MW_th Pressurized Oxy-Coal Swirl Combustor
- Detailed structural analysis
- Flow and combustion optimizations
- Manufacturing (conventional and advanced additive manufacturing)

Objective 3: Test of the Combustor Performance and Operability
- Flame stability analysis and flame temperature and heat flux measurements at range of pressure
- Swirl number (ratio of axial flux of the angular momentum to the axial flux of axial momentum)
- Flue gas analysis will be performed to produce fundamental combustion information
 - Effects of pressure
 - Swirl number
 - Stoichiometric ratio on burnout
 - Pollutant emissions
Timeline

- Kick off meeting: 12/01/2016
- Updated project management plan: 12/01/2016
- Determination of combustor operating conditions: 1/23/2017
- Analysis results of flue gas and CO₂ recirculation: 1/23/2017
- Technology gap analysis review: 10/17/2017
- Pintle injector design: 5/1/2018
- Preliminary design review: 7/18/2018
- Water test for the pintle injector: 9/1/2018
- Critical design review: 10/10/2018
- First article assembly: 4/10/2019
- Shake down test results: 5/20/2019

2016: OCT FEB JUN OCT FEB JUN OCT FEB

2019: OCT FEB
Cycle Analysis
ENEL

Main sections:
- Upstream
- Heat Exchanger
- Carbon Capture Unit

Has convective heat exchanger

Turbomachinery must operate up to 10 bar pressure

Increased efficiency
TIPS

- **Main sections:**
 - Upstream
 - Heat Exchanger
 - Carbon Capture Unit

- Has radiative heat exchanger in addition to convective heat exchanger

- Turbomachinery has to operate up to 80 bar pressure
Cycle Analysis

- **Cycle Simulation Parameters:**

<table>
<thead>
<tr>
<th>Element</th>
<th>Mass Flow Rate [kg/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal</td>
<td>18.87</td>
</tr>
<tr>
<td>Water</td>
<td>16.15</td>
</tr>
<tr>
<td>Oxygen</td>
<td>50</td>
</tr>
</tbody>
</table>

 Equivalence Ratio: 0.95

 Total Thermal Input: 550 MW

- **Simulations Completed:**

<table>
<thead>
<tr>
<th>Case</th>
<th>Recirculation Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20%</td>
</tr>
<tr>
<td>2</td>
<td>35%</td>
</tr>
<tr>
<td>3</td>
<td>50%</td>
</tr>
<tr>
<td>4</td>
<td>65%</td>
</tr>
<tr>
<td>5</td>
<td>75%</td>
</tr>
</tbody>
</table>
Efficiency

- Efficiency Ranges
 - ENEL = 26-38%
 - TIPS = 32-35%

- ENEL increases the burning rate of char and the heat transfer rates in the convective sections of the heat transfer equipment[1]

- ENEL reduces the energy penalties
 - Turbomachinery

Combustor Design
Combustor Design
Power Head

- Reactants Direction
- Secondary Burner #1
- Igniter #1
- Igniter #2
- Secondary Burner #2

Combustor Design
Secondary Burner & Igniter
Design Methodology (Igniter)

Operational Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chamber Pressure</td>
<td>5 - 20 bar</td>
</tr>
<tr>
<td>Total Mass Flow</td>
<td>4.5 - 9 g/s</td>
</tr>
<tr>
<td>Maximum burn time</td>
<td>5 s</td>
</tr>
<tr>
<td>Igniter Body Temperature</td>
<td>150 – 800 K</td>
</tr>
</tbody>
</table>

![Igniter Diagram](image-url)
Secondary Burner

- Two secondary burners
 - 125kW firing input each

- Co-axial shear injector
 - Fuel centered

<table>
<thead>
<tr>
<th>Mass Flow Rate</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methane</td>
<td>2.5 g/s</td>
<td></td>
</tr>
<tr>
<td>Oxygen</td>
<td>10 g/s</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>12.5 g/s</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Velocities</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methane</td>
<td>23.14 m/s</td>
<td></td>
</tr>
<tr>
<td>Oxygen</td>
<td>4.20 m/s</td>
<td></td>
</tr>
<tr>
<td>Velocity Ratio</td>
<td>5.51 N/A</td>
<td></td>
</tr>
<tr>
<td>Momentum Flux Ratio</td>
<td>15.38 N/A</td>
<td></td>
</tr>
</tbody>
</table>
Secondary Burner Test
Secondary Burner Test

Ignition

Pressurization

Operation

Depressurization
Secondary Burner Test

Ignition

Pressurization

Operation

Depressurization
Secondary Burner Test
Secondary Burner Test

Ignition → Operation → Pressurization → Depressurization
Secondary Burner Test

- Ignition
- Pressurization
- Operation
- Depressurization
Injector Design
Benefits
- Utilized for liquid injection
- Wide range of firing input
- 90% of burning efficiency

Pintle Injector History
- Developed in mid 1950s[1]
- Atomization and mixing propellants in rocket engines
- Performance in range of 96-99%[2]

Design Criteria
- Coal slurry as fuel (Radially)
- Gaseous oxygen as oxidizer (Axially)

Advantages
- Variety of firing input
- Range of spray angle
- Maintenance

Coal Slurry
- The coal powder mixed with water
- The percentage of solids concentration is $C_w = 75\%$ by weight $^{[1]}-^{[2]}$
- The maximum powder size is $200 \mu m$

Properties
- The density of slurry $\rho_{sl} = \frac{100}{\left(\frac{C_w}{\rho_{co}} + \frac{1-C_w}{\rho_{w}}\right)}$
- The oxygen density is obtained at 11 bar

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firing input</td>
<td>250</td>
<td>kW</td>
</tr>
<tr>
<td>Lower Heating Value</td>
<td>27.5</td>
<td>MJ/Kg</td>
</tr>
<tr>
<td>O/F stochiometric</td>
<td>2.56</td>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Density</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen</td>
<td>14.3</td>
<td>kg/m3</td>
</tr>
<tr>
<td>Coal</td>
<td>850</td>
<td>kg/m3</td>
</tr>
<tr>
<td>Water</td>
<td>998.6</td>
<td>kg/m3</td>
</tr>
<tr>
<td>Slurry</td>
<td>882.8</td>
<td>kg/m3</td>
</tr>
</tbody>
</table>

Injector Design: Pintle

Flow rates

- Coal mass flowrate, \(m_{coal} = \frac{\text{Firing Input}}{\text{lower heating value}} \)
- Oxygen mass flowrate, \(m_{oxygen} = (m_{coal}) \times \left(\frac{0}{F} \right)_{st} \)
 - Slurry mass flow rate \(m_{slurry} = \frac{100 \times m_{coal}}{C_w} \)

<table>
<thead>
<tr>
<th>Mass Flow Rate</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal</td>
<td>9.1</td>
<td>g/s</td>
</tr>
<tr>
<td>Oxygen</td>
<td>23.3</td>
<td>g/s</td>
</tr>
<tr>
<td>Slurry</td>
<td>12.1</td>
<td>g/s</td>
</tr>
<tr>
<td>Total</td>
<td>35.4</td>
<td>g/s</td>
</tr>
</tbody>
</table>
Injector Design: Pintle

Total momentum ratio \(TMR = \frac{m_{sl} v_{sl}}{m_o v_o} = \tan \alpha \)

\(\alpha \): Spray angle

The velocity of the slurry \(v_{sl} = \frac{m_{sl}'}{A_{sl} \rho_{sl}} \)

The area of slurry \(A_{sl} = N \frac{\pi}{4} D_{po}^2 \)

\(N \): The number of orifices on pintle tip
\(D_{po} \): The orifice diameter

\[\text{Number of orifices} \]
The velocity of the oxygen \(v_o \) is given by:

\[
v_o = \frac{TMR m_{sl} v_{sl}}{m_o}
\]

The area of oxygen \(A_o \) is:

\[
A_o = \frac{m_o}{v_o \rho_o}
\]

The Closing Plate hole diameter \(D \) is:

\[
D = \sqrt{\frac{4A_o}{\pi}} + D_p^2
\]

\(D_p \): The pintle post outer diameter

The annulus gap \(Gap \) is:

\[
Gap = \frac{D - D_p}{2}
\]
Injector Water Test
An optical method based on:
- High resolution imaging
- High illumination

Used for visualizing:
- Particles, droplets, and structures

Advantages
- Better identification of droplets and flow patterns
- Ideal for water testing
- Measure droplets
- Monitor atomization

DynamicStudio controls camera settings and acquires images

Shadow sizing of droplets analyzed by same program
Water Set-Up
Water Set-Up

Pintle injector

Isolation device

Diffuser plate and LED light

Angle
Water Set-Up Results

<table>
<thead>
<tr>
<th>Run</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical Angle (Degree)</td>
<td>90</td>
<td>88</td>
<td>87</td>
<td>86</td>
<td>85</td>
</tr>
<tr>
<td>Water Flowrate (g/s)</td>
<td>37.6</td>
<td>37.6</td>
<td>37.6</td>
<td>37.6</td>
<td>37.6</td>
</tr>
<tr>
<td>Nitrogen Flowrate (g/s)</td>
<td>0</td>
<td>7.6</td>
<td>14.7</td>
<td>19.9</td>
<td>26.3</td>
</tr>
<tr>
<td>Experimental Angle (Degree)</td>
<td>90</td>
<td>89</td>
<td>85</td>
<td>73</td>
<td>80</td>
</tr>
<tr>
<td>error(%)</td>
<td>0.0</td>
<td>-1.1</td>
<td>2.4</td>
<td>17.8</td>
<td>6.3</td>
</tr>
</tbody>
</table>
Exhaust Design Concept
Exhaust Design Concept

- A small pressure vessel is attached with flanges

- Ash removal
 - Water added with sprinklers
 - Ash drained and collected at the bottom

- Modular design for the ash collection
 - Maintenance

- Pressurized with chocked flow
 - Valve
Exhaust gas with water

Schematic of exhaust system

Gas

Water and Ash

Side View of the Exhaust

Top View of the Exhaust
Team Members

Jad G. Aboud
(Team Lead)
Ph.D. Student
Mechanical Engineering

Ana Rios
Ph.D. Student
Mechanical Engineering

Mehrin Chowdhury
Ph.D. Student
Mechanical Engineering

Mohieminul Khan
Ph.D. Student
Mechanical Engineering
Contact Information

Office Location
The University of Texas at El Paso
Metallurgy Building
Room M-305
500 W. University Ave.
El Paso, TX 79968-0521

Contact information
Tel: (915) 747-8252
Fax: (915) 747-5549
Email: csetr@utep.edu
facebook.com/MIROcSETR
twitter.com/UTEP_cSETR