Novel Catalytic Process Technology for Utilization of CO$_2$ for Ethylene Oxide and Propylene Oxide Production

DE-FE0030678

Marty Lail, Paul Mobley, Jonathan Peters, Angela Zheng, Vijay Gupta, Jak Tanthana, and Jim Zhou

RTI International

Steve Mascaro
US Department of Energy
National Energy Technology Lab

Presented August 17th, 2018

2018 NETL CO$_2$ Capture Technology Project Review Meeting
Pittsburgh, PA
Materials Background

Previous Work (NETL, DE-FE00004329)

• Mixed metal oxide (MMO) developed
• \((\text{Fe}_2\text{O}_3)(\text{SnO}_2)_{1.41}(\text{Al}_2\text{O}_3)_{1.82}\)
• Utilization of \(\text{CO}_2\) for char gasification

- Required high temperature for removal of oxygen from \(\text{CO}_2\) (~800° C)
- High temperature difficult for selective oxidations
- Needed to develop new material
New Materials Working at Lower Temperature

- Screened and discovered new compositions
- Have comparable overall capacity for oxygen from CO$_2$
- Remove oxygen at lower temperatures compared to the earlier materials
- Work funded in 2015 by CCEMC, Alberta, CAN K130115

Market Potential: Carbon Monoxide

- CO produced has numerous applications
- More than 59 Mt of CO are used annually
- Large and growing market for CO globally ($23 billion, 5.7% expected annual growth)

- Industrial CO source could drive new economic activity
- Significant CO stream
Evaluation of Material for EtO Selectivity

- Evaluated new materials in automated fixed-bed micro-reactor
- MKS FTIR multi-gas analyzer
- GC-MS
- Probed optimal reaction conditions using DOE
- Identified relatively low temperature region for operation
- Higher temperature than conventional EtO process
 - 300° C
 - 20 bar total pressure
 - 1 C₂H₄: 2 CO₂

- FTIR Multi-gas analyzer results for EtO
- Result shown for many cycles
Comparison to Conventional EtO Production

- Ethylene epoxidation has been practiced for many years with single pass conversions and overall yield being low.
- FTIR showed similar yield as \(\text{O}_2 \)-based catalysts but uses \(\text{CO}_2 \).

Conventional epoxidation catalyst used with air or oxygen:

\[
\text{Ag} \quad \text{Ag} \quad \text{Ag} \quad \text{Ag} \\
\text{Al} \quad \text{Al} \quad \text{Al} \quad \text{Al} \\
\text{O} \quad \text{O} \quad \text{O} \quad \text{O} \\
\text{silver particles on } \alpha\text{-alumina} + \text{Cl}^-, \text{NO}_3^-, \text{Cs}^+, \text{Na}^+, \text{Li}^+
\]

Many promoters investigated to promote selectivity and activity.

EtO Producers

<table>
<thead>
<tr>
<th>EtO Producers</th>
<th>Current Production Processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dow Chemical</td>
<td>METEOR™ EtO/glycol process technology, polyethylene (1,300 kt), ethylene dichloride/vinyl chloride monomer (730 kt)</td>
</tr>
<tr>
<td>Shell Global</td>
<td>Shell MASTER Process, Shell OMEGA Process, mono-ethylene glycol (450 kt), styrene monomer (450 kt)</td>
</tr>
<tr>
<td>Scientific Design</td>
<td>Couples EO/EG technology with its SynDox® catalysts. Catalysts used at more than 100 EO/EG plants worldwide</td>
</tr>
</tbody>
</table>

Market Potential: Ethylene Oxide

- Large and growing market for EtO in North America and globally
- Ethylene oxide demand is over 24 Mt globally (~$40 billion USD)
 - 14th most produced organic chemical
 - Global demand expected to grow 6% per annum
 - 4th largest industrial emitter of CO₂ (6.3 Mt per annum globally)
RTI’s technology enables CO$_2$ from other sources to be utilized to produce ethylene oxide
- Reduces CO$_2$ emissions from conventional ethylene oxide process (direct CO$_2$ emissions of average plant are 150-200 kt-CO$_2$/yr)
- Consumes CO$_2$ as a process feed gas
- Reduces footprint of CO production (0.67 kg-CO$_2$/kg-CO)
A 350 kt production plant could reduce CO$_2$ emissions by 1 Mt per annum
Improving the Material

- Addition of promoters to the mixed-metal oxide for increased activity for EtO production
- Optimization of the metal-oxide phases and support for synergistic adsorption and mechanical properties for better EtO selectivity
- Improve metal oxide–support interaction by selection of:
 - support materials
 - particle size
 - porosity
 - ratio of metal-oxide phases on the surface or subsurface of the catalyst
- Changing the fabrication process conditions
 - e.g., calcination temperature

<table>
<thead>
<tr>
<th>Success Metric</th>
<th>Ideal Target</th>
<th>Minimum Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>EtO selectivity</td>
<td>56%</td>
<td>37%</td>
</tr>
<tr>
<td>EtO yield</td>
<td>11.5%</td>
<td>5%</td>
</tr>
<tr>
<td>CO:EtO mass ratio</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>Metal oxide replacement cycle</td>
<td>10 years</td>
<td>3 years</td>
</tr>
<tr>
<td>Demonstrated operational time</td>
<td>200 hr</td>
<td>100 hr</td>
</tr>
</tbody>
</table>
Framework for Project

“Novel Catalytic Process Technology for Utilization of CO₂ for Ethylene Oxide and Propylene Oxide Production” (DE-FE0030678)

Key Focus Areas

Characterizing and Refining Metal Oxide Formulation (Tasks 2, 3)

Extension to PO (Task 5)

Bench-Scale Evaluation (Task 4, 7)

Process Modeling and Technology Assessments (Task 6, 8, 9)

Timeframe: BP1: 10/1/17 to 09/30/18, BP2: 10/1/18 to 09/30/19

Budget:
- BP1 $461,651 (DOE) + $100,000 (cost share)
- BP2 $338,349 + $100,000 (cost share)

Total Budget = $1,000,000

RTI International - Dr. S. Jim Zhao, Principle Investigator
US DOE/ NETL – Steve Mascaro, Project Manager
Identifying MMO Phases by XRD

- XRF confirmed quantities of metals anticipated in the MMO's
- Mole ratio of M_1/M_2 varied to elucidate importance in CO$_2$ reduction
- Mole ratio to support varied to elucidate metal-support interactions
- XRD confirmed common metal oxide phases
- Small nanoparticle size of metal oxides
- Low crystallinity of support phase in primary samples
Characterizing the MMO using pulsed CO$_2$- Chemisorption

Experimental demonstration of CO$_2$ reduction
Catalytic CO$_2$-to-CO conversion < 600 °C

Test conditions:
- 400-600° C
- 1 atm CO$_2$
- 5% H$_2$ at 400° C

Reduction step
- Confirms CO$_2$ reduction
- 400° C low level of activity
- 500 -600° C higher activity
- ~2 wt% CO$_2$ reduction capacity shown in these experiments
Summary of CO₂ Reduction Findings

- A metal/support interaction is conducive to oxygen abstraction from CO
- The optimum metal oxide mole ratio for CO₂ reduction is approximately 0.25
- Increasing the crystal size from ~30 to ~50 nm does not appear to have a significant impact on CO₂ reduction
- Chloride is neither a poison nor a promoter to CO₂ reduction
- For this type of MMO, CO₂ reduction can be achieved at temperatures 500-600°C
Testing MMO’s for Ethylene Epoxidation

- Used a microreactor
- Fixed bed
- Micro-GC and FTIR gas analysis
- Carbon trap on product stream to further verify products
- Started with a baseline material to reproduce earlier results

<table>
<thead>
<tr>
<th>Pretreatment</th>
<th>Reaction</th>
<th>Oxidation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas Composition (vol%)</td>
<td>Reduction - CO: 5</td>
<td>CO$_2$: 17.5 - 32.5</td>
</tr>
<tr>
<td></td>
<td>Oxidation - CO$_2$: 5</td>
<td>C$_2$H$_2$: 5 - 12.5</td>
</tr>
<tr>
<td></td>
<td>N$_2$: balance</td>
<td>N$_2$: balance</td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>500-600</td>
<td>325-350</td>
</tr>
<tr>
<td>Pressure (bar)</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>
• Observed CO and ethylene oxide by FTIR
Task 3 Results with micro-GC detection

(1) pretreated with 5% CO to reduce, (2) 5% CO₂ to oxidize, at 500°C, 20 bar. (3) Reaction with 25% CO₂, 5% ethylene at 350°C at 20 bar. (4) Oxidation with 5% O₂ at 500°C, 20 bar.

- Observed CO, but very little ethylene oxide
Task 3 Results Repeated with FTIR detection

1. Pretreatment with 5% H₂ to reduce 5% CO₂ to oxidize, at 500° C, 20 bar
2. CO₂, 5% ethylene at 350° C at 20 bar

FTIR signals

- Confirmed ethylene oxide not being produced
Simulating the leak of oxygen into the reactor produces ethylene oxide.
Thermodynamics of CO$_2$ Reduction/ Ethylene Epoxidation

- Thermodynamically favorable reactions can be postulated for both redox steps
- The cycle is not closed, probably why ethylene oxidation is not being observed
Conclusions and Future Directions

- Characterized mixed metal oxides for thermochemical CO\(_2\) reduction
- Identified formulation for CO\(_2\) reduction between 500-600\(^\circ\) C
- Confirmed the production of CO in microreactor testing under process conditions
- Met BP1 milestones for characterization

- Baseline catalyst testing shows inconsistencies in transfer of oxygen derived from CO\(_2\) to ethylene to form ethylene oxide
- Have not yet met BP1 milestone for refinement of MMO to show higher EtO yield
- Could apply existing CO\(_2\) reducing formulation to other MT market chemicals as alternative to epoxides

- Need to refine phase selection to meet thermodynamic requirements
Acknowledgements

Steve Mascaro, Project Manager
Morgantown, WV
Lynn Brickett, Carbon Capture Technology Manager
Pittsburgh, PA
John Litynski, CCS Division Director
Washington, DC

Dr. Jim Zhou, Director Gas Separations
Dr. Dennis Gilmore, Sr. Director
Dr. Angela Zheng, Research Chemist
Mr. Jonathan Peters, Chemical Engineer