Microstructure-Sensitive Crystal Viscoplasticity for Ni-base Superalloys (with application to long-term creep-fatigue interactions)

Award DE-FE0011722 August 2013 – December 2017 (including NCE) Program Manager: Dr. Patcharin Burke

PI: Richard W. Neu

The George W. Woodruff School of Mechanical Engineering School of Materials Science & Engineering Georgia Institute of Technology Atlanta, GA 30332-0405 rick.neu@gatech.edu

University Turbine Systems Research Workshop Pittsburgh November 1-2, 2017

Hot Section Gas Turbine Materials

The George W. Woodruff School of Mechanical Engineering

School of Materials Science and Engineering

Land-based gas turbines

- drive to increase service temperature to improve efficiency; increase life; with minimal increase in cost
- replace large directionallysolidified Ni-base superalloys with single crystal superalloys

Complexities in evaluating creep-fatigue interaction

Lengths scales in the Ni-base superalloys

PSPP Map for Ni-base Superalloy Airfoils

The George W. Woodruff School of Mechanical Engineering

School of Materials Science and Engineering

Georgia Institute of Technology Microstructure, Properties, & Performance

The George W. Woodruff School of Mechanical Engineering

Role of Chemical Composition

The George W. Woodruff School of Mechanical Engineering

Single Crystal Alloy being Investigated for IGT Applications

The George W. Woodruff School of Mechanical Engineering

School of Materials Science and Engineering

CMSX-8: 1.5% Re "alternative 2nd gen alloy" replacing 3.0% Re containing alloys (e.g., CMSX-4, PWA1484)

Alloy	Cr	Co	Mo	W	Al	Ti	Ta	Re	Hf	С	В	Zr	Ni
Mar-M247LC-DS	8.4	10.0	0.7	10.0	5.5	1.0	3.0	-	1.5	0.07	0.015	0.05	Bal
CM247LC-DS	8.1	9.2	0.5	9.5	5.6	0.7	3.2	-	1.4	0.07	0.015	0.01	Bal
CMSX-4	6.5	9.0	0.6	6.0	5.6	1.0	6.5	3.0	0.1	-	-	-	Bal
SC16	16	0.17	3.0	0.16	3.5	3.5	3.5	-	-	-	-	-	Bal
PWA1484	5.0	10.0	2.0	6.0	5.6	-	9.0	3.0	0.1	-	-	-	Bal
CMSX-8	<mark>5.4</mark>	<mark>10.0</mark>	<mark>0.6</mark>	<mark>8.0</mark>	<mark>5.7</mark>	<mark>0.7</mark>	<mark>8.0</mark>	<mark>1.5</mark>	<mark>0.2</mark>	-	-	-	<mark>Bal</mark>

Influence of Temperature, Loading Direction and Crystal Orientation on Modulus and Strength

The George W. Woodruff School of Mechanical Engineering

- Creep-fatigue interaction experiments on CMSX-8
- Influence of aging on microstructure and creep-fatigue interactions
- Microstructure-sensitive, temperaturedependent crystal viscoplasticity to capture the creep and cyclic deformation response

Creep-Fatigue Interaction Experiments

The George W. Woodruff School of Mechanical Engineering

School of Materials Science and Engineering

Experimentally establish the creep-fatigue interactions in a single-crystal Ni-base superalloy that is being targeted for use in industrial gas turbines (CMSX-8)

- Characterize creep-fatigue interactions on CMSX-8
 - Creep-fatigue
 - Thermomechanical fatigue
 - Creep (either tension or compression) followed by fatigue
 - Fatigue followed by creep
- Characterize the influence of aging on microstructure and creepfatigue interactions
 TMF life: R = 0 (IP) vs. R = -1 (OP)

Conventional Creep-Fatigue (baseline)

Conventional Creep-Fatigue (baseline)

Half-life at 1100 °C

The George W. Woodruff School of Mechanical Engineering

School of Materials Science and Engineering

Crack Characteristics

The George W. Woodruff School of Mechanical Engineering

R = 0, T = 1100°C, $\Delta\epsilon = 0.8\%$ $N_f = 1420$

$$\epsilon \int_{t} R = 0$$

School of Materials Science and Engineering

$$\label{eq:relation} \begin{split} R = -\infty, \ T = 1100^{o}C, \ \Delta \epsilon = 0.8\% \\ N_f = 980 \end{split}$$

Fatigue Lifetime Models - I

The George W. Woodruff School of Mechanical Engineering

School of Materials Science and Engineering

Ostergren Model

- Energy-based life prediction model based on the net hysteretic energy.
- Accounts for the mean stress and cycle time (frequency) effect.
- The accuracy of prediction relies on precision of inelastic strain measurement.

Fatigue Lifetime Models - II

The George W. Woodruff School of Mechanical Engineering

School of Materials Science and Engineering

Zamrik and Renauld Model

- Introducing hold-time and elevated temperature function to account for creep effect and exponentially increasing creep/or environmental damage with increasing temperature, respectively.
- Substituting inelastic strain with maximum tensile strain range.

$$N = A \left[\left(\frac{\varepsilon_{ten}}{\varepsilon_f} \right) \left(\frac{\sigma_{max}}{\sigma_u} \right) \right]^B \left(1 + \frac{t_h}{t_c} \right)^C exp \left(\frac{-Q}{R(T_{max} - T_0)} \right)$$

- σ_{max} : maximum tensile stress in mid-life hysteresis loop
- $m{arepsilon_{ten}}$: tensile strain range in mid-life hysteresis loop for which the stress is tensile

[Zamrik and Renauld, 2000]

- σ_u : ultimate strength measured under monotonic tensile loading
- $oldsymbol{arepsilon}_f$: elongation to failure measured under monotonic tensile loading
- *t_h*: length of compressive hold-time
- t_c : length of total time including hold-time
- **Q**: activation energy for high temperature damage

Fatigue Lifetime Models - III

The George W. Woodruff School of Mechanical Engineering

School of Materials Science and Engineering

Kulawinski et al. Model

- The model is based on Zamrik model and the energy density term includes:
 - Zamrik damage parameter
 - Inelastic strain range
 - Stress range
 - Arrhenius term

$$N_{f} = A \left[\Delta \sigma_{eq} \cdot \Delta \varepsilon_{eq}^{in} \cdot W_{zam} \cdot exp\left(\frac{-Q}{RT}\right) \right]^{B}$$

$$\mathbf{W}_{\mathsf{Kul}}$$

- The goodness of fit plot shows majority of life predictions using Kulawinski model lie within the scatter band of factor two.
- 95% of the variance of the low cycle fatigue (LCF) and creep-fatigue (CFI) life data is captured by this lifetime model.

[Kulawinski et al., 2015]

The George W. Woodruff School of Mechanical Engineering

- Creep-fatigue interaction experiments on CMSX-8
- Influence of aging on microstructure and creep-fatigue interactions
- Microstructure-sensitive, temperaturedependent crystal viscoplasticity to capture the creep and cyclic deformation response

Microstructure Evolution in Blades

The George W. Woodruff School of Mechanical Engineering.

School of Materials Science and Engineering

Distance from Root

Microstructures Generated by Additive Manufacturing

The George W. Woodruff School of Mechanical Engineering

School of Materials Science and Engineering

 SX Height Melt Depth I
 Deposit Height

 Original Substrate Height

500 μm —

As-built

500 nm **-**

After Heat Treatment

500 nm •

[Basak and Das (Georgia Tech), 2017]

Rafting and Coarsening of y'

GeorgiaInstitute of **Tech**nology

The George W. Woodruff School of Mechanical Engineering

School of Materials Science and Engineering

[Epishin et al., 2008]

High-Throughput Stress-assisted Aging

Aged Microstructure under Compressive Stress

The George W. Woodruff School of Mechanical Engineering

School of Materials Science and Engineering

Compression Creep Frame

Ceramic Compression Creep Extensometer

Aging Behavior of CMSX-8

[Gorgannejad, Estrada Rodos, and Neu, Materials at High Temperature, 2016]

Influence of Variation in Composition

The George W. Woodruff School of Mechanical Engineering

Y'

Influence of Re Content on Diffusivity

The George W. Woodruff School of Mechanical Engineering

School of Materials Science and Engineering

- Effective diffusivity of system is equivalent to effective diffusivity in *γ* channels.
- Diffusivity of Ni-m binary systems computed from mobility databases using DICTRA from Thermo-Calc.

$$D_{eff} = D_{0,eff} exp\left(-\frac{Q_{eff}}{kT}\right)$$

[Mushongera et al. 2015]

 C_m : atomic concentration of element m

[Estrada Rodas, Gorgannejad, Neu, et al., Superalloys 2016]

Employing Data Science to Predict Aged Structure

The George W. Woodruff School of Mechanical Engineering

School of Materials Science and Engineering

microstructure as a result of various aging histories is generated

Tracking Microstructure Evolution

The George W. Woodruff School of Mechanical Engineering

School of Materials Science and Engineering

- The 2-point statisical correlation is a rigorous quantification method that describes spatial correlation and critical structural information with microstructure reconstruction capability.
- It is computed based on the probability density associated with finding an ordered pair of specific phase at the head and tail of a randomly placed vector *r* into the microstructure.

•

Large Dimensional Dataset generated by 2-point statistical spatial correlation

Data Visualization of Aged CMSX-8 in PC Space

The George W. Woodruff School of Mechanical Engineering

- Application of PCA to the high dimension 2-point spatial correlation results in a reduced-order representation of microstructure ensemble.
- The axes are ordered descendingly by the extent of variation each explain.

Powerful classification and visualization tool:

- School of Materials Science and Engineering
- PCA is a linear approach to dimensionality reduction by coordinate transform.
- The axes are defined by the directions of the highest variance

Effect of Aging on Creep-Fatigue

Role of Microstructure on LCF – Three Critical Temperature Regimes to Study

The George W. Woodruff School of Mechanical Engineering

Influence of Microstructure $R_{\epsilon} = 0$ versus $R_{\epsilon} = -\infty$ at 1100 °C

The George W. Woodruff School of Mechanical Engineering

School of Materials Science and Engineering

No notable microstructure influence when $R_{\epsilon} = -\infty$.

Fatigue-environment interaction likely explanation when $R_{\epsilon} = -\infty$.

Fracture surface topology – Low cycle fatigue at 1100°C

Low Cycle Fatigue Response of CMSX-8 [001] $R_{c} = 0$, strain rate = 1 x 10⁻³ 1/s

The George W. Woodruff School of Mechanical Engineering

First 10 cycles – RT and 750 °C

The George W. Woodruff School of Mechanical Engineering

Fracture Surfaces

School of Materials Science and Engineering

Low Cycle Fatigue at Room Temperature

As-heat-treated

As-heat-treated

Low Cycle Fatigue at 750 ° C

Pre-aged

Pre-crept

Pre-crept

Crack Propagation Paths

The George W. Woodruff School of Mechanical Engineering

School of Materials Science and Engineering

LCF at Room temperature

Pre-aged microstructure

10 μm		
開設		
5 μm		

CFI at **750** °C

As –heat – treated microstructure

The George W. Woodruff School of Mechanical Engineering

- Creep-fatigue interaction experiments on CMSX-8
- Influence of aging on microstructure and creep-fatigue interactions
- Microstructure-sensitive, temperaturedependent crystal viscoplasticity to capture the creep and cyclic deformation response

Creep Deformation REGIMES

The George W. Woodruff School of Mechanical Engineering

[Reed, 2006; Ma, Dye, and Reed, 2008; our CMSX-8 Data]

School of Materials Science and Engineering

Tertiary – dislocation activity restricted to a/2 < 110> form operating on {111} slip planes in the γ channels

Primary – γ' particles are sheared by dislocation ribbons of overall Burgers vector a<112> dissociated into superlattice partial dislocations separated by a stacking fault; shear stress must above threshold stress (about 550 MPa)

Microstructure-sensitive Crystal Viscoplasticity for Single-Crystal Ni-base Superalloys

time [hrs] Tertiary creep: 950 °C, Stress = 400 MPa

time [hrs] Primary creep: 750 °C, Stress = 680 MPa

Crystal Viscoplasticity – Kinematic Relations

The George W. Woodruff School of Mechanical Engineering

School of Materials Science and Engineering

Kinematic relations including temperature dependence

Deformation gradient

$$\mathbf{F} = \frac{\P \mathbf{x}}{\P \mathbf{X}} = \mathbf{F}^e \times \mathbf{F}^p \times \mathbf{F}^q$$

Velocity gradient $\mathbf{L} = \dot{\mathbf{F}} \times \mathbf{F}^{-1}$

Macroscopic plastic velocity gradient

$$\mathbf{L}^{p} = \dot{\mathbf{F}}^{p} \mathbf{F}^{p^{-1}} = \mathop{\bigotimes}_{\partial=1}^{N_{slip}} \dot{\mathcal{G}}^{(\partial)} \left(\mathbf{s}_{o}^{(\partial)} \stackrel{\mathcal{H}}{\wedge} \mathbf{n}_{o}^{(\partial)} \right)$$

Crystal Viscoplasticity (CVP) – Rate Eqn

The George W. Woodruff School of Mechanical Engineering

School of Materials Science and Engineering

Inelastic Velocity Gradient

$$\mathbf{L}^{in} = \dot{\mathbf{F}}^{in} \mathbf{F}^{in^{-1}} = f_{\gamma} \left(\sum_{\alpha=1}^{12} \dot{\gamma}_{\gamma}^{in(\alpha)} \left(\hat{\mathbf{d}}^{(\alpha)} \otimes \hat{\mathbf{n}}^{(\alpha)} \right) \right) + f_{\gamma'} \left(\sum_{\alpha=13}^{24} \dot{\gamma}_{L_{1_2}}^{in(\alpha)} \left(\hat{\mathbf{d}}^{(\alpha)} \otimes \hat{\mathbf{n}}^{(\alpha)} \right) \right)$$

Inelastic Shear Strain Rate

$$\dot{\gamma}_{\gamma}^{in(\alpha)} = \rho^{(\alpha)}_{\gamma} \ b \ \lambda_{\gamma}^{(\alpha)} F_{attack} sign\left(\tau^{(\alpha)} + \tau^{(\alpha)}_{mis} - \chi^{(\alpha)}\right) \exp\left\{\frac{-Q_{slip}^{110} + \left(\left|\tau^{(\alpha)} + \tau^{(\alpha)}_{mis} - \chi^{(\alpha)}\right| - \tau^{(\alpha)}_{\gamma}\right) - \tau^{(\alpha)}_{r}\right)}{kT}\right\}$$

$$\dot{\gamma}_{L1_2}^{in(\alpha)} = \rho_{L1_2}^{(\alpha)} b \ \lambda_{L1_2}^{(\alpha)} F_{attack} sign\left(\tau^{(\alpha)} - \chi^{(\alpha)}\right) \exp\left\{\frac{-Q_{slip}^{112} + \left(\left|\tau^{(\alpha)} - \chi^{(\alpha)}\right| - \tau^{(\alpha)}_{L1_2 pass} - \tau_{APB}\right) V_{c2}^{(\alpha)}}{kT}\right\}$$

$\begin{aligned} \mathbf{Dislocation Density Evolution Equations} \\ & \left[\dot{\rho}_{\gamma}^{(\alpha)} = \frac{1}{b} \left[\frac{c_{mult1}}{\lambda_{\gamma}^{(\alpha)}} - c_{annh1} \rho_{\gamma}^{(\alpha)} \right] \dot{\gamma}_{\gamma}^{in(\alpha)} \right] \\ & \dot{\rho}_{L1_2}^{(\alpha)} = c_{mult21} \rho_{pb}^{(\alpha)} \Gamma + \frac{c_{mult22}}{b \lambda_{\gamma'}^{(\alpha)}} \dot{\gamma}_{\gamma'}^{(\alpha)} - c_{annh2} \rho_{\gamma'}^{(\alpha)} \dot{\gamma}_{\gamma'}^{(\alpha)} \right] \\ & \dot{\rho}_{pb}^{(\alpha)} = \frac{c_{mult}^{pb}}{b L_{\gamma}} \dot{\gamma}_{\gamma}^{in(\alpha)} - c_{pb}^{pb} \rho_{pb}^{(\alpha)} \dot{\gamma}_{\gamma}^{in(\alpha)} \right] \end{aligned}$

Evolution of dislocation densities

The George W. Woodruff School of Mechanical Engineering

multiplication annihilation $\frac{c_{mult1}}{\lambda_{\gamma}^{(\alpha)}} - c_{annh1} \rho_{\gamma}^{(\alpha)} \left| \dot{\gamma}_{\gamma}^{in(\alpha)} \right|$ $\dot{\rho}_{\gamma}^{(\alpha)}$

 $\dot{\rho}_{pb}^{(\alpha)} = \frac{c_{mult}^{po}}{bL_{m}} \left| \dot{\gamma}_{\gamma}^{in(\alpha)} \right| - c_{annh}^{pb} \rho_{pb}^{(\alpha)} \left| \dot{\gamma}_{\gamma}^{in(\alpha)} \right|$

 $\dot{\rho}_{L1_{2}}^{(\alpha)} = c_{mult21} \rho_{pb}^{(\alpha)} \Gamma + \frac{c_{mult22}}{b \lambda_{wl}^{(\alpha)}} \left| \dot{\gamma}_{\gamma'}^{(\alpha)} \right| - c_{annh2} \rho_{\gamma'}^{(\alpha)} \left| \dot{\gamma}_{\gamma'}^{(\alpha)} \right|$

Creep in different orientations

The George W. Woodruff School of Mechanical Engineering

GeorgiaInstitute of **Tech**nology

Various Creep Predictions

The George W. Woodruff School of Mechanical Engineering

Effect of Channel Size on Creep

The George W. Woodruff School of Mechanical Engineering

Effect of APB Energy on Creep

The George W. Woodruff School of Mechanical Engineering

Primary and Tertiary Creep

The George W. Woodruff School of Mechanical Engineering

TMF validation

The George W. Woodruff School of Mechanical Engineering

School of Materials Science and Engineering

Very good agreement predicting TMF

The George W. Woodruff School of Mechanical Engineering

of **Technology**

School of Materials Science and Engineering

Since Re segregates almost exclusively in the γ channels, the Activation energy in the γ phase can be modified to account for Re content as follows:

$$\begin{split} \dot{\gamma}_{\gamma}^{in(\alpha)} &= \Theta\left(T\right)\rho^{(\alpha)}_{\gamma} \ b \ \lambda_{\gamma}^{(\alpha)} F_{attack} sign\left(\tau^{(\alpha)} + \tau^{(\alpha)}_{mis} - \chi^{(\alpha)}\right) \exp\left\{\frac{-Q_{slip}^{110} + \left(\left|\tau^{(\alpha)} + \tau^{(\alpha)}_{mis} - \chi^{(\alpha)}\right| - \tau^{(\alpha)}_{\gamma pass} - \tau^{(\alpha)}_{oro}\right) V_{c1}^{(\alpha)}}{kT}\right\} \\ \dot{\gamma}_{L1_{2}}^{in(\alpha)} &= \rho_{L1_{2}}^{(\alpha)} b \ \lambda_{L1_{2}}^{(\alpha)} F_{attack} sign\left(\tau^{(\alpha)} - \chi^{(\alpha)}\right) \exp\left\{\frac{-Q_{slip}^{112} + \left(\left|\tau^{(\alpha)} - \chi^{(\alpha)}\right| - \tau^{(\alpha)}_{L1_{2} pass} - \tau_{APB}\right) V_{c2}^{(\alpha)}}{kT}\right\} \end{split}$$

If we considering activation energy for plastic flow Q_0 a function of %Re, the diffusivity parameter could take the form of:

$$\Theta(T) = \exp\left(-\frac{Q_o}{RT}\right) \quad \text{for } T \ge \frac{T_m}{2} \qquad \qquad \Theta(T) = \exp\left(-\frac{2Q_o}{RT}\left[\ln\left(\frac{T_m}{2T}\right) + 1\right]\right) \quad \text{for } T \le \frac{T_m}{2}$$

[Miller, 1976; Shenoy et al., 2005]

Intellectual Impacts

The George W. Woodruff School of Mechanical Engineering

Creep-Fatigue Interaction Experiments and Lifetime Models

Experiments & Models (both physically-based and data analytics) to Predict Current State of Microstructure (Service Process-Structure Linkages)

- Stress-free and stress-assisted (rafting) aging experiments under tensile and compressive stresses
- Establishing process-structure linkages using physical models, 2-point statistics and PCA

Microstructure-sensitive Crystal Viscoplasticity (CVP) Model to Determine Service "Process"-Structure-Property Linkages

School of Materials Science and Engineering

$$\mathbf{L}^{in} = \dot{\mathbf{F}}^{in} \, \mathbf{F}^{in^{-1}} = f_{\gamma} \left(\sum_{\alpha=1}^{12} \dot{\gamma}_{\gamma}^{in(\alpha)} \left(\hat{\mathbf{d}}^{(\alpha)} \otimes \hat{\mathbf{n}}^{(\alpha)} \right) \right) + f_{\gamma'} \left(\sum_{\alpha=13}^{24} \dot{\gamma}_{L1_2}^{in(\alpha)} \left(\hat{\mathbf{d}}^{(\alpha)} \otimes \hat{\mathbf{n}}^{(\alpha)} \right) \right)$$

γ deformation

y' deformation

Established Method to Determine Sensitivity of Local Composition on Diffusivity for Input in Aging and Viscoplasticity Models

> Thermo-Calc DICTRA Databases: TCNi5 / MOBNi2

- Composition segregation in γ and γ' phase
- Determination of composition sensitive effective diffusivity to characterize aging activation energy and diffusivity parameter in viscoplasiticity models

The George W. Woodruff School of Mechanical Engineering

Acknowledgments

School of Materials Science and Engineering

This work is supported by

Grant DE-FE0011722