

Predicting the Oxidation/Corrosion Performance of Structural Alloys in Supercritical CO₂

DE-FE0024120

S.C. Kung, J.P. Shingledecker, T. Lolla (EPRI) I.G. Wright (WrightHT, Inc) A.S. Sabau (ORNL)

> 2017 UTSR Project Review Pittsburgh, PA November 2, 2017

Project objectives

- Overall Objectives
 - predict the oxidation/corrosion performance of structural alloys in high-temperature high-pressure supercritical CO₂ (sCO₂)
 - combine laboratory testing & computational modeling, incorporating unique attributes of sCO₂ heat exchangers and recuperators, to accomplish this goal
- Identify materials to help enable U.S. DOE Program Goals for future sCO₂ Transformational Power Systems

sCO₂ Power Turbine (676 MW)

Graphics by Aerojet Rocketdyne, used with permission

Some configurations of the sCO₂ Brayton power cycle might achieve **100% carbon dioxide capture and zero emissions of conventional pollutants** with little or no efficiency or capacity penalty.

Technology Challenges for sCO₂

- HX Expensive: about 40% of the plant cost
- Unique designs
 - small channels
 - large surface areas
- Materials considerations
 - thermal fatigue, creep (thin sections)
 - brazing/diffusion bonding
 - corrosion/oxidation/carburization

Corrosion/Oxidation

- Closed cycle = build-up of impurities
- Open cycle = combustion products
- Long-term performance, pluggage, blockage, etc.

Realistic sCO₂ conditions for (open) Allam cycles

Survey of industry and current studies

– 700°C likely maximum temperature in heat-exchangers

Evaluation of impurities for near-term 'open/direct-fired cycle' – Allam Cycle

- H₂O, O₂, N₂, Ar, NO_x, SO_x, HCl
- mass-balance calculations for methane and cooled, raw syngas (checked against thermodynamic calculations)

	Composition (mol%)		
Species	Methane	Cooled raw	Oxygen
		coal syngas	
CH_4	100	1.0	
CO		39.0	
H ₂		28.3	
CO ₂		8.0	
H₂O		20.0	
N ₂ +Ar		2.0	0.5
H2S	2 ppm	0.9	
HCI		0.02	
02			99.5
LHV	912 BTU/scf	218 BTU/scf	

 $O_2 = 3.6 \text{ vol}\%, H_2O = 5.3 \text{ vol}\%$

Scope of Laboratory sCO₂ Corrosion Tests

- Conditions
 - 650-750°C, 200 bar
 - $-sCO_2$
 - commercial purity
 - simulated semi-open cycle impurities (O₂ + H₂O)
- Materials
 - commercially available
 - Code approved/industry relevant
 - focus on economics
- Exposures
 - 2 x 300-h shakedown tests in $CO_2 \pm impurities$, 700°C, 200 bar (Gr91, TP304H, IN740H)
 - 3 x 1,000-h tests in CO₂ + impurities, 650, 700, 750°C, 200 bar (all 7 alloys)
 - 1 x 5,000-h test in CO₂ + impurities, 700°C, 200 bar (all 7 alloys), with scheduled sample retrievals

Det Norske Veritas (U.S.A.), Inc + Columbus Laboratory, Materials and Corrosion Technology Center (614) 761-1214

Laboratory testing facility

- Existing test facility modified for sCO₂ to ensure safety
- 650-750°C, 200 bar
- Introduction of impurities (3.6 O₂, 5.3 H₂O mol%)
- 5,000-h test in sCO₂ with impurities completed successfully

Gas Volume: 4.41 liters

Refresh Rate: static, with occasional replenishment

Temperatures: preheat 454°C. exit 149°C

Information needed for development of sCO₂ Exfoliation Model

- Oxidation rates as a function of oxide <u>thickness</u> vs. t and T
 - for oxide thickness: $d^2 = 2.k_p.t$, where: $k_p = Ae^{-Q/RT}$, or $\ln k_p = A-Q/RT$
 - Q from slope of an Arrhenius plot
 - mass-based oxidation data are of limited value
 - both oxidation and carburization lead to to weight gain
 - weight gain cannot be easily converted to thickness
 - but, bulk of literature data rely on mass gain
 - nevertheless, mass gain data are useful for comparisons of available data, for examining trends, etc.
- Morphological data
 - needed to infer modes of scale failure
 - current EPRI Exfoliation Model is based on morphologies formed in steam
 - hence, importance of understanding similarities/differences in sCO₂
 - for HT alloys, adequate characterization of very thin scales is problematic

Ferritic steels: Available mass gain data in sCO₂ and steam

Pure CO₂

- mass gain ±higher than in steam at lower values of Larson-Miller parameter (P)
- Impure CO₂
 - significantly lower mass gains than in pure CO₂ at lower values of P
- Expect similar morphologies in sCO₂ & steam?
 - only after higher T, longer t?

Potential differences in scale morphologies on ferritic steels from sCO₂ compared to HP steam?

Steam oxidation: different scale morphologies than in air

- $H_2O = O^{-2} + 2H^+$: mobility of all 3 in scales
- for ferritic (& austenitic steels), typically 2-layered scales: Fe-Cr spinel (inner, L1), magnetite (outer, L2)

Schematic representation:

cross section of fully-developed scale

on T91 in HP steam (EPRI Atlas)

• CO_2 oxidation involves: $CO_2 = O^{-2} + CO^{+2}$

- similar oxidation process to steam (i.e. similar scale morphologies)
- but, carburization could occur

 \rightarrow

Typical scale morphologies associated with ferritic steels

T91, 64kh at 566°C & 138 bar steam (EPRI Atlas)

T91, 155kh at 538°C & 17 bar steam (EPRI Atlas)

New results: Gr 91, 700°C in $sCO_2 + 3.6\% O_2$, 5.3% H₂O at 200 bar

Total Scale Thicknesses at 700°C

Scale morphologies after 1,000h in CO_2 +3.6% O_2 , 5.3% H_2O at 700°C and 200 bar – similar to those formed in steam

Gr91VM12Crofer 22HTP304HEDS Maps for Fe, Ni, Cr & O Overlaid on SEM Images

- Overall, similar structures to those in steam
 - voids associated with exfoliation are present in usual locations
- Some differences in apparent structure of inner layer (L1)
 - Gr91 shows layer(s) intermediate between L1 and L2 with Cr & Fe striations
 - some differences in extent and structure of 'IOZ' at alloy-L1 interface

Effects of impurities in sCO₂ on austenitic stainless steels?

 No real trend for pure vs. impure CO₂

-or for HP vs. 1 atm

-or vs. HP steam (not shown)

 Expect similar morphologies in CO₂, sCO₂, ±most impurities, and HP steam

Scale morphologies observed on austenitic stainless steels

Main features of scale in HP steam (Wright & Dooley, 2011)

Fe-Cr spinel (≈28 at% Cr) TP347HFG, 11kh at 670°C & 251 bar steam (EPRI Atlas)

TP347HFG, 500h at 700°C & 200 bar CO₂ (Pint & Keiser, 2014)

New results: TP304H, 700°C in CO₂ +3.6% O₂, 5.3% H₂O at 200 bar

New results: TP347H – initially protective scale

© 2015 Electric Power Research Institute, Inc. All rights reserved.

Effects of Impurities in sCO₂ on IN740H?

- So far, no obvious effects of impurities in CO₂ on weight gain
- More data are needed

EPRI supplied samples to all sCO₂ Round Robin testing laboratories and provides technical input

 $P = T(^{\circ}K)[20 + logt(hr)]x10^{-3}$

Mass Gain, mgcm⁻²

Thin scales on HT alloys complicate thickness measurements

• Max power of optical microscopy produces marginal resolution

IN740 after 4kh at 700°C in steam at 17 bar (Wright, 2009)

New SEM/BSE/EDS/EBSD techniques explored by EPRI

IN740 after 3.5kh at 700°C in 'impure' CO₂ at 200 bar (this study, 2017)

FIB-STEM offers better resolution, but it is time consuming and limited in area

New results: IN740H, 700°C, CO₂ +3.6% O₂, 5.3% H₂O at 200 bar

New results: IN617, 700°C in CO_2 +3.6% O_2 , 5.3% H_2O at 200 bar

Resulting oxidation kinetics available for use to modify EPRI Exfoliation Model (?)

- Considerations:
 - caution in using 'literature' data due to apparent influence of oxidizing impurities
 - new data appear mostly consistent, but are limited to results at 3 temperatures
- However, data for HT alloys show considerable scattering
 - augment measured thicknesses with converted mass-gain results?

Examples of resulting oxidation kinetics data (this study)

 Parabolic rate constants readily calculated from thickness data for ferritic and austenitic steels

Derived algorithms appear reasonable

Alloy	T Range (°C)	Α (μm²/h)	Q (kJ/mole)
Gr91	650-750	2.3 x 10 ¹⁹	-374
TP304H	650-750	7.6 x 10 ⁵	-148

Work in progress: Extraction of consistent kinetics for HT alloys

• Augmentation of thickness measurements with thicknesses derived from mass gain?

Data for 700°C up to 5,000h. Compared with 30% porosity in T92 at 650°C in steam (Knodler & Ennis, 2001)

- suggested densities of scales appear to be low

e.g., porosity of scale on Gr91≈ 68% (vs. 30% for T92 in steam)

- few matching scale thickness-mass gain measurements for IN740H, IN617
- Or, possible incorporation of oxidation kinetics for reliable chromia-forming alloys measured in HT steam (such as PMCr)?

Expected signs of C participation?

- Ferritic steels
 - UK research (1970s) identified breakaway oxidation phenomenon under AGR conditions
- Austenitic steels
 - C pick-up observed only in initial stages, or when duplex scales present (or after exfoliation)
- Chromia scales are known to be excellent barriers to C ingress
 - confirmed by recent observations at 550-750°C, to 200 bar (Pint, ORNL)
- High-Cr Ni-based (HT) alloys likely to be resistant to C pickup
 - equally applicable to solid solution and precipitation-strengthened Nibased candidate alloys?

Observed effects of C on oxidation of 9Cr ferritic steel

AGR testing showed accelerated oxidation of 9Cr steels in (impure) CO₂:

- CO_2 containing 1 vol% CO-300 ppmv H₂O-300 ppmv CH₄-100 ppmv H₂ at 40 bar
- breakaway oxidation > 580°C, ≥20 kh
- C saturation model for breakaway criteria
- However, not much information on scale morphologies
 - measured alloy C volume fraction vs. t, T

9Cr -1Mo finned SH tube, 20kh at 600°C in 42 bar CO_2 (Gong et al, 2017)

Fe-9Cr-1Mo at transition to breakaway (RH fin in previous slide)

- a) Morphology of main scale indistinguishable from those in steam
- b) IOZ shows fine, distributed carbides
- c) Alloy substrate was saturated with C: large, blocky M₂₃C₆, and M₂(C,N) needles

ELECTRIC POWER RESEARCH INSTITUTE

EPC

This study: Gr91 had greater depth of hardening in CG purity than CO_2 +3.6% O_2 , 5.3% H_2O at 200 bar after 300h at 700°C

ELECTRIC POWER

RESEARCH INSTITUTE

Ferritic Steels: 1,000h at 700°C in CO₂ +3.6% O₂, 5.3% H₂O at 200 bar

RESEARCH INSTITUTE

Anomalous Hardness Changes in TP304H after exposure at 700°C to CO_2 containing 3.6 vol% O_2 , 5.3 vol% H_2O at 200 bar?

300h: significant but highly-localized near-surface hardening

1,000h: no apparent increase in hardness

Hardness changes in HT alloys after exposure for 1,000h at 700°C to CO₂ containing 3.6 vol% O₂, 5.3 vol% H₂O at 200 bar

- Significant hardening to a relatively uniform depth of 150-200 µm
- Surprising, since HR3C is expected to form a protective chromia scale
- Could be associated with cold work from surface preparation ?

IN617 and IN740H

Micro-hardness measurements did not reveal any evidence of carburization.

Exfoliation Model to address unique influences of oxide growth on service life of small-channel heat-exchangers

- Lab studies: isothermal oxide growth on small flat coupons
- Real world: heat-flux, stress from complex geometries
- Modeling:
 - EPRI-developed strain trajectory approach for steam tubes
 - Properties of sCO₂ and alloys collected
 - Discussion with vendors on convex vs. concave surfaces – need to develop a generic modeling approach

Proposed Overall Summary of Results

- Actual examples that illustrate lifetime issues related to oxide growth
- Use critical dimensions from sCO₂ HX designs; all seven alloys
- Lifetime criteria used:
 - 1) ΔP due to oxide thickening
 - 2) t to breakaway due to Cr consumption
 - 3) t to reach critical scale thickness for exfoliation
- Possible further criterion:
 - 4) t for wall thickness to be thinned to unsafe level (strength criteria?)

Summary

- First project to address oxidation in semi-open Allam cycle sCO₂ conditions
 - impurity concentrations determined via mass balance and thermodynamic calculations
 - a new test rig was assembled and laboratory tests to 5,000h with and without impurities completed
- Oxidation rates in sCO₂
 - appear consistent, with similarities to those in HP steam
 - possibly slower when oxidizing impurities are present in sCO₂
 - no systematic effect of total pressure
- Scale morphologies
 - nominally followed expectations from steam, with some potential influences of C
- Surface hardening
 - identified in Gr 91 and VM12; more severe in 'pure' sCO_2
 - also in TP304H & HR3C, although behavior of TP304H appeared anomalous
 - none found in Ni-base alloys
- Evaluation of impact of scale growth in sCO₂ on service lifetimes for compact heat exchanger designs in progress - built on existing EPRI Oxide Exfoliation Model

Acknowledgements / Team

- This work is sponsored by the DOE Office of Fossil Energy Cross-Cutting Materials Research Program: *DE-FE0024120*
- DOE/NETL
 - Vito Cedro, Project Manager
- EPRI
 - John Shingledecker (Principal Investigator)
 - David Thimsen
 - Steve Kung
- DNV-GL
 - Brett Tossey
- Oak Ridge National Laboratory
 - Adrian Sabau
- WrightHT, Inc.
 - Ian Wright

Together...Shaping the Future of Electricity

