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Overview of the Scientific Problem

• What fundamental combustion properties/knowledge we need 
in order to design combustor for SCO2 oxy-combustion?
– Kinetics and dynamics
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Conceptual combustor*

Autoignition delays 
and 

flame dynamics of jet in crossflow

*J.Delimont, A. McClung, M. Portnoff, 2016 sCO2 symposium



Kinetic Challenges for SCO2-fuel-O2 Mixtures

3

CH4/O2/CO2 ( 9.5%:19%:71.48%)

Deviation increases with pressure: knowledge gap
Kinetic models must be validated at regime of interest

H2/CO/O2/CO2 (14.8%:14.8%:14.8%:55.6%)

×3

@1400K @1200K

?



Overview of the Scientific Questions and 
Proposed Work

• What is the fundamental combustion properties?
– Experimental investigation of chemical kinetic mechanisms 

for SCO2 Oxy-combustion (Task 1&2: Ranjan & Sun)

• How can we use the kinetic model to design 
combustors?
– Development of a compact and optimized chemical kinetic 

mechanism for SCO2 Oxy-combustion (Task 3: Sun)

• What is the combustor dynamics at this new 
condition?
– theoretical and numerical investigation of combustion 

instability for SCO2 Oxy-combustion (Task 4&5: Lieuwen, 
Menon & Sun)
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So what?

So what?



Task 1: Development of a High Pressure 
Shock Tube (complete)
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Key features:
• Large internal bore (6 inch or 15.24 cm)
• 69 ft long (~50 ms test time)
• Certified at 376 atm

Diaphragm section
(single or double)

Contoured valve 
for vacuum

Single piece test section
(2.1 m)

• 0.2 µm surface finish 
(electropolishing)

• Optical access

Eight optical windows



Task 1: Development of a High Pressure 
Shock Tube (complete)

• Mechanism of operation
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Lab-Frame Reflected Shock
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T5 = 1000 – 4000 K
P5 > P2

Lab-Frame Incident Shock

2 1
T2 = 500 – 2000 K

P2 > P1

Shock Tube Schematic 

First shock in Jan. 2017

Measured P, calculated T



Study of High Pressure Autoignition
- Facilities: mixture preparation
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High accuracy Baratrons (0.05%) to measure partial 
pressure for mixture preparation

MicroGC to monitor 
compositions

Magnetic stir to promote mixing

Turbo molecular 
pump



Example of Pressure Traces
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~ 8 ms test time

~ 20 ms test time

Unique features for high quality data



Challenges of High Pressure Shock Tube

• Shock tube is not just a tube

9

• Boundary layer
– from moving shock

• For polyatomic 
gases, BL is much 
thicker

• ID of shock tube 
must be large
– 150 mm

J. Hargis & E. Petersen, AIAA J, 2017

Argon as test gas



Challenges of High Pressure Shock Tube

• Test time needs to 
be long
– Long enough to 

capture autoignition
– Avoid bifurcation 

region
– Longer tube, longer 

test time (21 m)
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Shock bifurcation region, avoid

Ideal region for 
measurement

• A failed example
– CH4/O2/Ar/CO2=1:4:16:79
– P=40 bar, T=1488 K
– No autoignition captured

Reflected shock

P&T not constant

BL



Facility Validation
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• Low pressure autoignition
measurement and validation
– P = 20 atm, T = 1641 K
– CH4/O2/Ar=1:4:95

• Agrees well with simulation 
using Aramco 2.0 (as 
expected)

• Experiments vs. Stanford 
results
– Agreed at similar conditions
– e.g., CH4/O2/Ar (2/4/96)
– Stanford: 13.19 bar 1760 K 

τig= 67 µs
– GT: 16.5 bar 1737 K τig= 57 

µs

Good agreement between expt. and sim.



Facility Validation
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• CH4/O2/Ar=2:4:94

• P=30 bar

• T= 1366 K

• Excellent 
between PMT 
signal (OH* 
emission) and 
simulation with 
Aramco 2.0



Headaches from SCO2 !?
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Real Gas Effect in Shock Tube
• Negligible effect on thermodynamic properties (P, T) in region 

of interest
– Small difference (<10 K) in high T (>1000 K) region
– Kogekar et al., CNF 2017; Tang et al., IJCK 2006; Davidson et 

al., IJC 1996; 
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Real gas impacts on ethane profile
C2H6/O2/Ar @ 1300 K

• It does NOT mean 
negligible effect on 
chemical reactions
– Real gas non-unity activity 

coefficient (or fugacity) 
(negligible above 1100 K)

– unknowns
n-dodecane/air at 80 atm



CO2 Decomposition

• CO2
decomposition
– CO2CO+O

• Favored at high 
T, low P

• May affect 
autoignition
measurement
– Loose 

demarcation
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1200 K

1400 K

1600 K

1800 K

2200 K

Safe region



validation

CO2 effect

validation

pressure effect

Task 2: Investigation of Natural Gas and Syngas 
Autoignition in sCO2 Environment

• No study before in 
region of interest

• A new regime to 
explore!

• CO2 has negligible 
chemical effect
– Based on 1 to 15 atm

results and simulation 
using GRI 3.0 and 
Aramco 1.3

– GT 17 atm expt. 
Agreed with Aramco 
1.3 using same 
mixture with Hargis et 
al.
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e.g.:
J.W. Hargis, E.L. Petersen,  Energy & Fuels, (29) 2015
S. Vasu, D.F. Davidson, R.K. Hanson, Energy & Fuels, (25) 2011

We are here now

Too early to make conclusion

Critical P of CO2



Autoignition with high CO2 concentration: 
15 bar
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• CH4/O2/Ar/CO2=
5:10:40:45

• P=15 bar

• T= 1409 K



Autoignition with high CO2 concentration: 
41 bar
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• CH4/O2/Ar/CO2=
5:10:40:45

• P=41 bar

• T= 1535 K



Autoignition with high CO2 concentration: 
105 bar
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• CH4/O2/Ar/CO2=
3:6:24:67

• P=105 bar

• T= 1310 K

More data needed, simulation vs. expt. for comparison only
No conclusion, no recommendation yet



Task 3: Development of a Compact and Optimized Chemical 
Kinetic Model for SCO2 Oxy-combustion
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1. S. Coogan, X. Gao, W. Sun, Evaluation of Kinetic Mechanisms for Direct Fired Supercritical Oxy-Combustion of Natural Gas, TurboExpo 2016

• USC Mech II (111 
species) is used as a 
starting point for future 
optimized mechanism

• A 27 species reduced 
mechanism1 for natural 
gas and syngas is 
developed (still too large 
for CFD)

• A new 13 species model 
was developed with 
optimization

– Covers 900 K to 1800 K, 
150 atm to 300 atm

– Max 12% deviation

Autoignition (300 atm)

CH4/O2/CO2=0.031/0.062/0.907  φ=1



Task 4: Analytical modeling of Supercritical 
Reacting Jets in Crossflow

• Analytical framework for 
reacting jets in cross-flow
– connect flow dynamics to flame 

dynamics
– Modeling explicit flame position 

dynamics
– Modeling spatially integrated 

heat release dynamics as a 
function of flame position

• Understanding flow dynamics 
of a jet in cross-flow
– provide key inputs to the velocity 

field used in the analytical model

21

Analytic model of jet in crossflow



Position Dynamics PDE
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• Non-linear wrinkle convection
– Flow based convection as well as position-coupled diffusion based 

convection
• Linear term from “Diffusion” of wrinkles

– Similar to stretch effects in premixed flames (i.e. stretch correction 
to flame speed)

• Non-linear propagation-like term from diffusion
• Decompose all quantities into a steady time-average and 

time-dependent perturbation

( )
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Flame Position Dynamics
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• Governing Physics
– Wrinkle convection
– Diffusion, similar to premixed flame stretch
– Reactive type dynamics

• High Pe limit
– Diffusion time-scale large compared to convection time-scale
– Diffusion based convection – 1/Pe2

– Diffusion based propagation – 1/Pe
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Global Flame Dynamics
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• Time-average heat release

• Weighted Area Dynamics
– Note that for premixed flame with constant flame 

speed, this weighting was constant = flame speed

• Mass burning rate dynamics
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• For acoustically compact flames, spatially integrated heat release is 
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Experiment Data Processing
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• Vortex Tracking
• Extract Phase 

roll-off from 
experimental 
data
– Further data 

reduction and 
smoothing 
required to get 
meaningful 
information

• Physical 
parameters
– Convection 

speed
– Differences in 

leeward and 
windward side



Modeling Velocity Disturbances
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• Using experiment database
• Data Sampling

– w.r.t. jet centerline co-ordinate
– at windward and leeward vortex 

centerlines
– conditioned to flame location

• Leeward flame was too diffuse
• Spatial variation of phase roll-off from 

Fourier modes
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Key Takeaways from Task

• PDEs for steady state and fluctuating flame 
position 
– Reduce the need for a full-field mixture fraction solution

• Global dynamics through spatially integrated heat 
release expressed in terms of flame position 
dynamics
– Simplified expression for combustion dynamics 

modeling
• Identification of control parameter 

– From previously measured JICF data
– Vortex tracking
– Phase roll-off convection speed
– Differences in speed between windward and leeward side
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Task 5: LES Studies of Supercritical Mixing and 
Combustion 
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• Mixing and flame stability
• Systematic variation of design parameters

– Momentum ratios for fuel and oxygen, flow rate, number of sets
– Size, spacing, and locations of injectors

• Computational modeling may be more cost effective but include its
own challenges
– Autoignition kinetics (large uncertainty, maybe wrong)
– Turbulence-chemistry closure
– Real gas effects

Baseline model
NOT actual design



Recap of Last Year: Real Gas Effect
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• Global (highly simplified) kinetic model
• Reduced jet penetration with perfect gas EOS in comparison to Peng

Robinson EoS – clearly shows RG effects
• Heat release also decreased with perfect gas EOS

Real gas EOS Perfect gas EOS



Recap of Last Year:  
Flame Length and Combustion Efficiency
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• Combustion is not efficient
• Combustion efficiency estimated as:

𝜂𝜂 = 100 × �̇�𝑚𝑓𝑓,𝑖𝑖𝑖𝑖 − �̇�𝑚𝑓𝑓,𝑜𝑜𝑜𝑜𝑜𝑜

�̇�𝑚𝑓𝑓,𝑖𝑖𝑖𝑖
~ 49%

• Flame length, Lf ~ 14.5 Dox

– estimated as intersection of Z =
Zst and T = 1500 K

• 𝜂𝜂 needs to be improved
– Inflow realistic turbulence
– Modify J and jet spacing
– Mass flow rate changes
– Jet-staging and distributed mixing
– Inflow swirling

• Mixing is the key

Lf

Temperature overlaid with stoichiometry line



FLUENT Simulation

• Fluent simulation with circumferential 
injections 

• Mixing is challenging

31

CH4 contour

O2 contour

CH4O2

CO2



Summary of Progress for Numerical 
Investigation

• Focus on jet mixing, LES of non-reacting mixing to identify 
where stoichiometric surface appear, then identify 
autoignition regions
• Case 1: fuel jet behind O2 jet by 28 mm 
• Case 2: O2 behind fuel jet by 28 mm; Case 3: 14 mm

• LES using compressible adaptive-mesh-refinement (AMR) 
• Reduced finite-rate kinetics (from Task 3) used
• Implemented in a PSR based network model

• Studies of reacting spatial mixing layer (SML) configuration 
• Canonical problem with some known features
• CH4-O2 mixing and reactions in CO2 background
• Study effect of pressure, details of the kinetics
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LES using AMR: Mixing in JICF
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• AMR refines grid near the jet inlets.
• SGS closure accounts for AMR1

1Muralidharan & Menon, AIAA-0825-2014

Dynamic AMR1



Mixing Studies Using LES
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Case 1 Case 2 Case 3 
• Z= 1 (fuel), Z = 0 (oxidizer); dashed black line: stoichiometric mixture fraction
• Cross flow: sCO2 at 300 atm; Fuel jet diameter is 3 mm, O2 jet diameter is 5 mm
• Case 1 and 3 - distance between jets is 28 mm; Case 2 - 14 mm
• A bigger and continuous zone of stoichiometry is visible when the two jets are closer 

indicating enhanced mixing
• Mixing dependent on injection locations & conditions – difficult to optimize



Task 5: LES Studies of Supercritical Mixing 
and Combustion
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Equilibrium Calculations using PSR

• Points were selected from the LES 
as an input to PSR 

• Initial concentrations of species and 
temperature were selected at these 
points.

• The equilibrium temperature, species 
concentrations are tabulated in the 
next slide.

• From the table we see that the points 
7, 8 and 9 where the oxidizer and 
fuel have mixed we get combustion

• Shown for Case 2



Task 5: LES Studies of Supercritical Mixing 
and Combustion
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Point Temp.
Tin{K}

CH4
Conc. 

O2
Conc.

CO2
Conc.

Temp.
Eq.{K}

CH4
Eq.

O2
Eq.

CO2
Eq.

1 361.22 0.989 0.0 0.011 361.22 0.989 0.0 0.011

2 385.95 0.980 0.0 0.02 385.93 0.980 0.0 0.020

3 695.79 0.325 0.0 0.675 645.30 0.313 0.0 0.687

4 363.14 0.0 0.999 0.001 363.14 0.0 0.999 0.001

5 364.06 0.0 0.998 0.002 364.06 0.0 0.998 0.002

6 474.49 0.0 0.948 0.052 483.78 0.0 0.947 0.053

7 654.53 0.028 0.545 0.427 1184.1
1

0.0 0.546 0.454

8 697.67 0.044 0.414 0.542 1446.9 0.0 0.325 0.675

9 807.32 0.042 0.236 0.722 1464.7 0.0 0.151 0.849

10 1026.6 0.005 0.076 0.919 1104.5 0.0 0.064 0.936

11 859.22 0.100 0.015 0.885 762.65 0.059 0.0 0.941



2D Spatial Mixing Layer
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• Splitter plate: 1.2 mm
• CH4 jet of 3mm, 30 m/s, 300K
• O2 jet of 5 mm,30 m/s, 300 K
• Outer jets of CO2 at 50 m/s, 500k
• 1 atm, 200 atm and 300 atm cases
• 5-species reduced kinetics from

Task 3
• New analysis shows that vapor-

liquid equilibrium (VLE) can occur
under supercritical conditions

CH4

O2

CO2

CO2

172 mm

554 mm

Mixing Studies, CO2 Contours

Reacting Studies, Temp Contours



Vapor-Liquid Equilibrium in Supercritical 
Mixtures

38

Sub-critical jet

Super-critical jet

• Single species: the phase is uniquely 
defined by the equilibrium diagram

• Subcritical regime: jet exhibits 
atomization, droplets, and sharp 
gas/liquid interface

• Supercritical regime: Interface is 
diffused and no droplet formation

• Mixtures: VLE exists at interface for 
given (𝑝𝑝, 𝑇𝑇) and composition 𝑧𝑧𝑖𝑖. 

• JICF can have local VLE regions in
• CH4-CO2, O2-CO2 interfaces
• CH4-O2-CO2-H2O regions

• Critical properties of each component 
play a crucial role to determine VLE 

• Need to include VLE effects to 
account for mixture effects



Future of Task 5

• Revisit the earlier supercritical JICF mixing case, 
accounting for presence of VLE to reassess the 
problems seen in the past.

• Continue spatial mixing layer studies with 
different conditions
• Binary mixing under supercritical conditions
• Reacting cases under supercritical conditions

• Autoignition studies will require more detailed 
kinetics
• 19 species chemistry from Task 3 available
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Summary of Year 2 Achievement

• High pressure shock tube commissioned
– System validation (vs simulation, previous work)
– Measurement of autoignition delays with high CO2

concentration (above critical pressure of CO2)
• Different optimized reduced kinetic models 

developed and implemented in CFD
• Governing equation developed for theoretical 

frame work
• LES investigation of JICF

– Not efficient on mixing
– Sensitive to kinetic models
– Jet mixing, quick estimation of autoignition location
– Vapor-liquid equilibrium plays important role

40
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Thank you!
&

Questions?
Acknowledgement: 
UTSR Project: DE-FE0025174; PM: Seth Lawson
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