# Advancing Pressure Gain Combustion in Terrestrial Turbine Systems

Stephen D. Heister and Carson D. Slabaugh

School of Aeronautics and Astronautics Purdue University West Lafayette, IN



### Introduction

| PUBBLIE          |
|------------------|
| <b>BUPULSIUN</b> |

#### Motivation and Objectives

#### **Project Goals**

- Demonstrate and characterize operation of RDE at conditions relevant to land-based power generation
- o (Better) understand injection and scaling

#### **Operational Requirements**

- Natural gas Air operation with potential for GOx enrichment
- o Chamber Pressure: 300 psia
- Preheated Air Temperature: 600 800 °F

#### Measurement Approach

- o Integral thrust and chamber pressure
- High frequency chamber and manifold probes
- Plume flow-field measurements w/ Stereo PIV
- o Chamber emissions

#### Key Challenges

- Ensuring operability with natural gas air propellant combination
- o Achieving rapid mixing

#### **Research Team**



Carson Slabaugh, Assistant Prof.



Dr. Swanand Sardeshmukh, Postdoctoral Researcher



Kyle Schwinn, M.S./PhD student



Ian Walters M.S. student





Kota Mikushiba, Ph.D. student



Dr. Rohan Gejji, Postdoctoral Researcher

- Effort Includes Seven Major Tasks
- Task 1.0 Project Management and Planning
- Task 2.0 Baseline Canonical Experiments
- Task 3.0 Subscale Combustor Facility Development
- Task 4.0 Integral Measurement of Pressure Gain
- Task 5.0 Detailed Measurements of Exit Conditions
- Task 6.0 Emissions Measurements
- Task 7.0 Computational Model Development
- Also A few head scratchers from AFOSR Rocket RDE project



### **Baseline Canonical Experiment – DRONE Rig**



- Detonation Rig for Optical, Non-intrusive Experimental measurements
- o DRONE is a semi-bounded, linear detonation channel experiment
  - Enabling optical diagnostics for quantitative analysis
  - Simplified geometry conducive to complementary numerical modeling





#### 6

- Detonation Rig for Optical, Non-intrusive Experimental measurements
- Designed to enable advanced optical measurements in the reaction zone
  - Planar Laser-Induced Fluorescence
  - Focused Schlieren
  - Chemiluminescence imaging
- o Methane GOx
- o Ambient initial conditions
  - Nominal cell size:  $\lambda = 2.5 \text{ mm}$
  - CJ speed:  $u_{CJ} = 2390 \text{ m/s}$
- Modulating pulse-separation delay lines of branched detonation
- Exploiting dynamic response of injector to refill channel for (relevant) pulse timing







Typical Test Sequence





30

### Self-Excited, Multi-kHz, Instability... (without forcing)

- Self-excited dynamics reach a limit-cycle within 1 - 10 ms
  - Multi-kHz, steep-fronted waves
  - Nominal pressure fluctuation amplitudes 0.4 - 0.7 MPa
- High-frequency behavior is robust
- No coherent participation from propellant manifolds



#### **Developed Wave Structure**



- The wave structure generated is akin to that in an annular geometry
  - Significant turbulent burning in the fill-region, post-wave
  - Vortex shedding region at greatest axial extent
- Wave speed: 1500 1900 *m/s*
- Pressure ratio: 2 4 (relative to CTAP)
- CTAP pressure range:  $\approx 25 40 \ psia$







- Robust Behavior Throughout Parameter-Space
- Over 60 conditions tested
  - Overall mass-flux, equivalence ratio, ...
  - Initiation method
  - (Transverse) Acoustic boundary condition
- $\circ$  Optimal equivalence ratio range:  $\phi = 0.8 0.9$
- Higher  $\dot{m}''$  results in higher p', u need to be above 100 kg/s.m<sup>2</sup> to generate harmonic response









- Asymmetric Transverse Boundary Conditions (Closed-Open)
- o Four primary peaks
  - Primary Peak at 8300 Hz
  - Narrowband peak at 600 Hz
  - (weaker) satellite peaks sum-difference frequencies
- $\circ$  Computed 1T resonant frequency = 540 Hz







- Symmetric Transverse Boundary Conditions (Closed-Closed)
- o Four primary peaks
  - Primary Peak at 8160 Hz
  - Narrowband peak at 1000 Hz
  - Satellite peaks at  $8160 \pm 1000 Hz$
- $\circ$  Computed 1T resonant frequency = 1070 Hz







### Asymmetric Transverse Boundary Conditions (Closed-Open)



- Dynamic mode decomposition analysis reveals four robust modes
  - A 'bulk' intensity oscillation at the 1T frequency
  - Right-running (+Y) wave motion at 8 kHz
  - Sum-difference frequencies  $8 kHz \pm 610 Hz$



# Summary from the 'unwrapped' rig

### Did this even help?

- DRONE platform exhibits *self-excited*, highly-nonlinear behavior
  - Variation of 1T boundary condition isolated acoustic interactions that are not participatory in the primary mode of operation.
  - The gradient-based DDT mechanism is a likely cause of the wave-steepening process.
    - Ignition of "sensitive" reactant/product mixture
    - Likely this will be strongly influenced by chemical kinetics (TBD)
  - $\circ~$  Dynamic response of feed system plays strong role
- At realistic conditions, with the right reactants, these instabilities will happen.





### **Subscale Combustor Facility Development - Status**

- New Purdue lab formally dedicated on 22 Sept.
- 1500 F air piping completed last week
- DOE facility TRR held on Monday of this week and we flowed air in rig yesterday
- Aerojet-Rocketdyne hardware to be tested over next few months
- Purdue hardware testing to initiate in Spring, 2018

Carson's Facility Team Ian Walters Chris Journell Aaron Lemcherfi Andrew Pratt Rohan Gejji Carson Slabaugh

















# **Piloting Concept**

- A Resonator Amplifier Approach
- Use a smaller, NG-GOx RDE as a "pilot" that drives a main-stage NG-Air RDE
- o Main-stage combustion "locks in" to pilot wave
- Borrows from GT staged combustor design concept
- Motivation and Potential Benefits:
  - Trying a different approach...
  - NG-Air detonability: RDEs likely to have challenges with startup due cell size considerations at atmospheric pressure
  - Scaling thermal power: Provides ability to add additional air stages to increase volume of detonating mixture
  - Control of dynamics: Main-stage locks-in to pilot dynamics and reduce variation in wave dynamics (e.g. number, bifurcation) due to changing operating condition (Φ, m<sup>''</sup>)



### **Sting Injection Concept**

**Exploring Critical Sensitivities of Dynamics** 

- o Similar to an annular pintle injector
- Sting element provides opportunity to investigate multiple injector geometries/configurations with minimal system redesign/cost
- Small, measured changes in sting location to significantly affect reactant flow velocities and fuel injection stiffness
- o Reduce required fuel jet penetration distance



**Bluff Aft-facing Step** 



Angled Slots (Less developed)





### **Design Overview: Fuel Injector**





- Current air injector geometry achieves manifold pressure of 600 psi at 15 lb/s and 620F
- Area ratio of 8.4

### **Computational Model Development – Injector Response**

- 3-D nonreacting study to assess annular air injector response to rotating detonation waves
   o Reflective inlet boundary assumed
- Simple triangular waves imposed wave height/impulse, speed, and number have all been studied

W

100

89

78

67

56

45

34 23 12

1

-10

Axial Velocity Distribution at Combustor Inlet





• Initial wave propagation is supersonic, but rapidly attenuates to acoustic speed propagation







#### **Impulse Attenuation**

pressure [Pa]



23





- Pressure and density histories are affected by the reflected waves more than velocity.
- Mass flux fluctuates approximately ±10% from the "steady value" due to the reflection.
  - Reflected waves do create additional impulses and could perhaps spawn additional detn waves?
- Fill height is not affected by the reflection because of the low imposed pressure ratio

#### **Computational Model Development – Kinetics Effects**

- Heat release is coincident with pressure in global mechanism, but detailed chemistry can reveal complex structures (cell sizes and other features)
- Simulations below are for O2/CH4 with similar meshes

Global Chemistry, V = 2151 m/s

Time = 0.1  $\mu$ s

Detonation structure will become important in near-limit conditions, i.e. large cell size structures like methane/NG



#### GRI-1.2 Mechanism, V=2250 m/s









### **Computational Model Development – Mesh Resolution**

- Higher order chemistry approaches provide for more intricate interactions between pressure and heat release fields
- Unfortunately, this implies higher mesh resolution to capture intricacies



 $\Delta x = 2.5 \ \mu m$ 

Pressure, Pa





Heat Release, W/m<sup>3</sup>

#### **A Few Headscratchers from High Pressure Rocket RDE**





#### **Hardware Variations Studied**





### Some painful revelations...

130% 100% 120% 95% CTAP Ratio (P<sub>CTAP</sub> / P<sub>theory</sub>) %006 %0011 %0110/ F<sub>theory</sub>) 90% Thrust Ratio ( $F_{gross}$ 85% 80% 75% 70% 60% 70% 40% 60% 80% 100% 120% 65% 70% 75% 80% 85% 90% 95% 100% Thrust Ratio (F<sub>gross</sub> / F<sub>theory</sub>) Wave Speed Ratio  $(V / V_{CI})$ 

- Thrust does not correlate with CTAP! (but does correlate weakly with wave speed)
- CTAP of 125% of theoretical was measured shock interaction with the probe site?

### **Global Performance Trends**



- Wave speeds increase with decreasing number of waves
- Highest thrust obtained with 2 and 4 wave cases with max performance at 93% of theoretical CP device
- Low thrust in single-wave cases likely due to over-filling chamber
- Single wave velocity exceeding CJ is perhaps a periodic DDT

### **Global Performance Trends**





- Video provides best diagnostic we have used pressure data can be misleading as wave structure is not apparent
- Cases that give high thrust show distinct detn waves with little combustion between waves.
- Bykovskii 4:1 length/ht criteria matched approximately in results

#### **Pressure and Mass Flow Effects**



- Wave number invariant over 4:1 throttle range has anyone seen that before?
- Minimal differences between methane and NG despite cell size differences
  - Perhaps this conclusion is unique to high pressure rocket and not general

#### **Pressure and Mass Flow Effects**





- Methane fuel with downstream injection produced best performance so minor flameholding with NG
  might explain differences
- We are still studying these results and will be for some time

### Summary



- DRONE platform exhibits self-excited, detonative behavior
  - Coupled interaction of reactant/product mixing and ignition delay
  - We need to pay attention to these issues relative to RDE cycle times
- High-power/pressure facility came on line this week

   Aerojet/Rocketdyne testing remainder of this year with Purdue Apex hardware in early 2018
- Inlet/chamber coupling parametric study complete (SciTech 2018)
- Detonation modeling indicates that near-limit conditions with NG will require tiny meshes to capture pressure/heat release interactions
- High pressure rocket work providing some areas to watch
  - o Thrust measurement does not line up with CTAP
  - o NG is similar to methane in behavior (for most cases)
  - o We still have a lot to learn relative to operability/wave topology

### **Testing Infrastructure**

#### **Thrust Stand Development**

- Mechanical Design
  - Annular flow manifold with standard flange interface
  - Flow manifold and fluid system interface to thrust measurement system across metric break
  - Ancillary support structure designed
- Fluid system design:
  - Delivering 20 lb/s of air at 300 psi and 800 F to test article through a generalized manifold system
  - Provides natural gas, cooling water, fuel and/or oxygen enrichment.
- Instrumentation:
  - Axial thrust measurement up to 20000 lbf with integrated calibration
  - 128 analog input channels for condition documentation
  - 32 high-frequency measurement channels for dynamic content



### **Test Article Assembly**







#### (Injection, Mixing, Ignition) + Gradient Mechanism

- o Zel'dovich gradient mechanism interacts with injector hydrodynamics to initiate a periodic DDT process.
- o Schlieren seems to support this understanding. Confirmation with chemiluminescence is imminent.

