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Measurement Approach
o Integral thrust and chamber pressure
o High frequency chamber and manifold probes
o Plume flow-field measurements w/ Stereo PIV
o Chamber emissions

Introduction

Key Challenges
o Ensuring operability with natural gas – air 

propellant combination
o Achieving rapid mixing

Project Goals
o Demonstrate and characterize operation of 

RDE at conditions relevant to land-based 
power generation

o (Better) understand injection and scaling

Operational Requirements
o Natural gas – Air operation with potential 

for GOx enrichment
o Chamber Pressure: 300 psia
o Preheated Air Temperature: 600 – 800 °F

Motivation and Objectives
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Summary/Status of  Efforts

• Effort Includes Seven Major Tasks
• Task 1.0 – Project Management and Planning
• Task 2.0 – Baseline Canonical Experiments
• Task 3.0 – Subscale Combustor Facility Development
• Task 4.0 – Integral Measurement of Pressure Gain
• Task 5.0 – Detailed Measurements of Exit Conditions
• Task 6.0 – Emissions Measurements
• Task 7.0 – Computational Model Development

• Also – A few head scratchers from AFOSR Rocket RDE project
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Baseline Canonical Experiment – DRONE Rig

o DRONE is a semi-bounded, linear detonation channel experiment
• Enabling optical diagnostics for quantitative analysis
• Simplified geometry conducive to complementary numerical modeling

Exit Plane

Detonation 
Channel

Injector Plate

Instrumentation 
Window BlankFuel Manifolds

Oxidizer Manifold x

z y

Detonation Rig for Optical, Non-intrusive Experimental measurements
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Injection Dynamics

o Designed to enable advanced optical 
measurements in the reaction zone
● Planar Laser-Induced Fluorescence
● Focused Schlieren
● Chemiluminescence imaging

o Methane – GOx
o Ambient initial conditions

● Nominal cell size: λ = 2.5 mm

● CJ speed: uCJ = 2390 m/s
o Modulating pulse-separation delay 

lines of branched detonation
o Exploiting dynamic response of 

injector to refill channel for (relevant) 
pulse timing

Detonation Rig for Optical, Non-intrusive Experimental measurements
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Injection Dynamics
Typical Test Sequence
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Injection Dynamics
Self-Excited, Multi-kHz, Instability… (without forcing)
o Self-excited dynamics reach a 

limit-cycle within 1 − 10 𝑚𝑚𝑚𝑚
• Multi-kHz, steep-fronted waves
• Nominal pressure fluctuation 

amplitudes 0.4 – 0.7 𝑀𝑀𝑀𝑀𝑀𝑀

• High-frequency behavior is robust
• No coherent participation from 

propellant manifolds
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Injection Dynamics
Developed Wave Structure
o The wave structure generated is akin to that 

in an annular geometry
• Significant turbulent burning in the fill-region, 

post-wave
• Vortex shedding region at greatest axial extent

o Wave speed: 1500 – 1900 𝑚𝑚/𝑠𝑠
o Pressure ratio: 2 - 4 (relative to CTAP)
o CTAP pressure range: ≈ 25 – 40 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
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Injection Dynamics
Robust Behavior Throughout Parameter-Space
o Over 60 conditions tested

• Overall mass-flux, equivalence ratio, …
• Initiation method
• (Transverse) Acoustic boundary condition

o Optimal equivalence ratio range: 𝜙𝜙 = 0.8 – 0.9
o Higher 𝑚̇𝑚′′ results in higher 𝑝𝑝𝑝,𝑢𝑢 – need to be above 

100 kg/s.m2 to generate harmonic response
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Injection Dynamics
Asymmetric Transverse Boundary Conditions (Closed-Open)

𝒎̇𝒎′′ = 𝟏𝟏𝟏𝟏𝟏𝟏 𝒌𝒌𝒌𝒌/𝒔𝒔.𝒎𝒎𝟐𝟐; 𝝓𝝓 = 𝟎𝟎.𝟗𝟗𝟗𝟗

o Four primary peaks
• Primary Peak at 8300 𝐻𝐻𝐻𝐻
• Narrowband peak at 600 𝐻𝐻𝐻𝐻
• (weaker) satellite peaks sum-difference 

frequencies
o Computed 1T resonant frequency = 540 𝐻𝐻𝐻𝐻
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Injection Dynamics
Symmetric Transverse Boundary Conditions (Closed-Closed)

𝒎̇𝒎′′ = 𝟏𝟏𝟏𝟏𝟏𝟏 𝒌𝒌𝒌𝒌/𝒔𝒔.𝒎𝒎𝟐𝟐; 𝝓𝝓 = 𝟎𝟎.𝟗𝟗𝟗𝟗

o Four primary peaks
• Primary Peak at 8160 𝐻𝐻𝐻𝐻
• Narrowband peak at 1000 𝐻𝐻𝐻𝐻
• Satellite peaks at 8160 ± 1000 𝐻𝐻𝐻𝐻

o Computed 1T resonant frequency = 1070 𝐻𝐻𝐻𝐻
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Injection Dynamics

o Dynamic mode decomposition analysis reveals four 
robust modes 
• A ’bulk’ intensity oscillation at the 1T frequency
• Right-running (+Y) wave motion at 8 𝑘𝑘𝑘𝑘𝑘𝑘
• Sum-difference frequencies 8 𝑘𝑘𝑘𝑘𝑘𝑘 ± 610 𝐻𝐻𝐻𝐻

Asymmetric Transverse Boundary Conditions (Closed-Open)

8004 Hz

610 Hz

Raw Movie
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Summary from the ‘unwrapped’ rig
Did this even help?
● DRONE platform exhibits self-excited, highly-nonlinear behavior

o Variation of 1T boundary condition isolated acoustic interactions that are not 
participatory in the primary mode of operation.

o The gradient-based DDT mechanism is a likely cause of the wave-steepening 
process.

• Ignition of “sensitive” reactant/product mixture
• Likely this will be strongly influenced by chemical kinetics (TBD)

o Dynamic response of feed system plays strong role

● At realistic conditions, with the right reactants, these instabilities will happen.
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Subscale Combustor Facility Development - Status
● New Purdue lab formally dedicated on 22 Sept.
● 1500 F air piping completed last week
● DOE facility TRR held on Monday of this week and we flowed air in rig yesterday
● Aerojet-Rocketdyne hardware to be tested over next few months
● Purdue hardware testing to initiate in Spring, 2018
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Subscale Combustor Facility Development

Nominal Operating Conditions

Airflow, lbm/s 20

Fuel flow, lbm/s 1.1 

P_chamb, psi 300

T_air, F 620

V_wave, m/s 1750

P_max, psi 2400

f, Hz 2900
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Piloting Concept

Pilot 
GOx

Pilot NG

Main 
Chamber

Main Fuel/Air

o Use a smaller, NG-GOx RDE as a “pilot” that 
drives a main-stage NG-Air RDE

o Main-stage combustion “locks in” to pilot wave
o Borrows from GT staged combustor design 

concept
o Motivation and Potential Benefits:

• Trying a different approach…
• NG-Air detonability: RDEs likely to have challenges with 

startup due cell size considerations at atmospheric 
pressure

• Scaling thermal power: Provides ability to add additional 
air stages to increase volume of detonating mixture

• Control of dynamics: Main-stage locks-in to pilot 
dynamics and reduce variation in wave dynamics (e.g. 
number, bifurcation) due to changing operating condition 
(Φ, 𝑚̇𝑚′′)

A Resonator – Amplifier Approach
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o Similar to an annular pintle injector
o Sting element provides opportunity to investigate 

multiple injector geometries/configurations with 
minimal system redesign/cost

o Small, measured changes in sting location to 
significantly affect reactant flow velocities and fuel 
injection stiffness

o Reduce required fuel jet penetration distance

Sting Injection Concept

Air AirNG
Manifold

Sting Concept

Main 
Chamber

Exploring Critical Sensitivities of Dynamics

Bluff Aft-facing Step Angled Slots
(Less developed)
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Design Overview: Fuel Injector

● Current air injector geometry achieves manifold 
pressure of 600 psi at 15 lb/s and 620F

● Area ratio of 8.4
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Axial Velocity Distribution at R = const
(centerline radius) slice 

Axial Velocity Distribution at Combustor 
Inlet

Computational Model Development – Injector Response

● 3-D nonreacting study to assess annular air injector response to rotating detonation waves
o Reflective inlet boundary assumed

● Simple triangular waves imposed – wave height/impulse, speed, and number have all been studied
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Typical Pressure Response

3D Pressure Contour

● Initial wave propagation is supersonic, but rapidly attenuates to acoustic speed propagation
● Wave reflections complicate signals – inlet struts will substantially effect manifold acoustic response






23

Impulse Attenuation
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Injection History for Wave Pressure Ratio=8

• Pressure and density histories are affected 
by the reflected waves more than velocity.

• Mass flux fluctuates approximately ±10% 
from the “steady value” due to the 
reflection.

• Reflected waves do create additional impulses 
and could perhaps spawn additional detn
waves?

• Fill height is not affected by the reflection 
because of the low imposed pressure ratio
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Computational Model Development – Kinetics Effects

Global Chemistry, V = 2151 m/s GRI-1.2 Mechanism, V=2250 m/s

● Heat release is coincident with pressure in global mechanism, but detailed chemistry can reveal complex 
structures (cell sizes and other features)

● Simulations below are for O2/CH4 with similar meshes
● Detonation structure will become important in near-limit conditions, i.e. large cell size structures like 

methane/NG
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∆x = 12.5 µm

∆x = 2.5 µm

Computational Model Development – Mesh Resolution

● Higher order chemistry approaches provide for more intricate interactions between pressure 
and heat release fields

● Unfortunately, this implies higher mesh resolution to capture intricacies Heat Release, W/m3

Pressure, Pa
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A Few Headscratchers from High Pressure Rocket RDE



28

Hardware Variations Studied
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Narrow GOX Gap
Wide Channel
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• Thrust does not correlate with CTAP!  (but does correlate weakly with wave speed)
• CTAP of 125% of theoretical was measured – shock interaction with the probe site?

Some painful revelations…
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Global Performance Trends

• Wave speeds increase with decreasing number of waves
• Highest thrust obtained with 2 and 4 wave cases with max performance at 93% of theoretical CP device
• Low thrust in single-wave cases likely due to over-filling chamber
• Single wave velocity exceeding CJ is perhaps a periodic DDT
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V1.3 #70

Global Performance Trends

• Video provides best diagnostic we have used – pressure data can be misleading as wave structure is not 
apparent

• Cases that give high thrust show distinct detn waves with little combustion between waves.  
• Bykovskii 4:1 length/ht criteria matched approximately in results
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Pressure and Mass Flow Effects

• Wave number invariant over 4:1 throttle range – has anyone seen that before?
• Minimal differences between methane and NG despite cell size differences

• Perhaps this conclusion is unique to high pressure rocket and not general
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Pressure and Mass Flow Effects

• Methane fuel with downstream injection produced best performance so minor flameholding with NG 
might explain differences

• We are still studying these results and will be for some time
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Summary

● DRONE platform exhibits self-excited, detonative behavior
o Coupled interaction of reactant/product mixing and ignition delay
o We need to pay attention to these issues relative to RDE cycle times 

● High-power/pressure facility came on line this week  
o Aerojet/Rocketdyne testing remainder of this year with Purdue Apex hardware in early 2018

● Inlet/chamber coupling parametric study complete (SciTech 2018)
● Detonation modeling indicates that near-limit conditions with NG will require tiny meshes to capture pressure/heat 

release interactions
● High pressure rocket work providing some areas to watch

o Thrust measurement does not line up with CTAP
o NG is similar to methane in behavior (for most cases)
o We still have a lot to learn relative to operability/wave topology
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Testing Infrastructure

● Mechanical Design
o Annular flow manifold with standard flange 

interface
o Flow manifold and fluid system interface to 

thrust measurement system across metric 
break

o Ancillary support structure designed

● Fluid system design:
o Delivering 20 lb/s of air at 300 psi and 800 F 

to test article through a generalized manifold 
system

o Provides natural gas, cooling water, fuel 
and/or oxygen enrichment.

● Instrumentation:
o Axial thrust measurement up to 20000 lbf

with integrated calibration
o 128 analog input channels for condition 

documentation
o 32 high-frequency measurement channels 

for dynamic content

Thrust Stand Development



36

Test Article Assembly
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Injection Dynamics

7454 Hz

8004 Hz

Raw Movie

8654 Hz

610 Hz

o Zel’dovich gradient mechanism interacts with injector hydrodynamics to initiate a periodic DDT process.
o Schlieren seems to support this understanding.  Confirmation with chemiluminescence is imminent.

(Injection, Mixing, Ignition) + Gradient Mechanism
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