Effects of Exhaust Gas Recirculation (EGR) on Turbulent Combustion Emissions in Advanced Gas Turbine Combustors with High Hydrogen Content (HHC) Fuels

Jay P. Gore and Robert P. Lucht,

Purdue University

Maurice J. Zucrow Laboratories School of Mechanical Engineering Purdue University West Lafayette, IN

DOE Award No. DE-FE0011822

National Energy Technology Laboratory University Turbine Systems Research Program Project Review Meeting November 1-2, 2017

Acknowledgments

Collaborations

Yiguang Ju and Michael Mueller – Princeton Gaurav Kumar and Scott Drennan – Convergent Sci. Inc. New Braunfels, Texas Jeff Moder – NASA Glenn Research Center Related Sponsors – FAA, ONR, Rolls Royce, Siemens, GE

PhD students

Dong Han – CARS and PLIF Hasti Veeraraghava Raju - CFD simulations Jupyoung Kim – PIV

Post Doctoral Associate : Aman Satija

DOE Program Manager: Mark Freeman

Content

- 1. Piloted Axisymmetric Reactor Assisted Turbulent (PARAT) burner development and testing under atmospheric and high-pressure conditions
- 2. Effects of CO₂ addition on turbulent flame structure and burning velocity
- 3. Temperature and velocity measurements in CH₄ /air/CO₂ flames with different levels of CO₂ addition using CARS and PIV
- 4. Development and validation of LES model for H₂ piloted CH₄ /air/CO₂ premixed turbulent flames
- 5. CH PLIF and IR imaging for turbulent premixed flames

Experimental Apparatus: PARAT Burner

Flames with varying levels of CO₂ addition

Re=10,000, T_{ad}=2030 K, Le=1, P=1 bar 5% CO_{2.} Φ=0.84 **0% CO_{2.} Φ=0.80** 10% CO_{2.} Φ=0.89 8 -8 -8 -6 -6 -6 -Å 0× ^X 4 4 4 -2 -2 -2 -0 0. 0. 0 -1 -1 0 -1 0 r/D r/D r/D Flames designed to minimize thermal and transport effects on NOx

Large Eddy Reacting Flow Simulations

CFD Summary

- Premixing tube simulated separately and the solutions patched
- Jet Reynolds number 10000
- Domain (D= 18 mm): 36D x 64D x 36 D
- Detailed chemistry solver with DRM19 mech.
 Turbulence 1 eq. dynamic structure model
- Sensitivity study with base grid : 10 x 8 x 6 mm
- 4 Level Adaptive Mesh Refinement based on Velocity and Temperature, Max. 15 M cells
- Mesh sensitivity studied with Max. 30 M cells

Chemistry

- DRM19 Mechanism: (http://combustion.berkeley.edu/drm/)
- Elements : O, H, C, N, AR
- Species: H2, H, O, O2, OH, H2O, HO2, CH2, CH2(S), CH3, CH4, CO, CO2, HCO, CH2O, CH3O, C2H4, C2H5, C2H6, N2, AR
- Number of Reactions: 84

Large Eddy Simulations

Inlet Boundary Conditions LES Comparison with Experiments

Boundary Condition & Turbulence Intensity at x/D=0.2

Mean & RMS velocity profiles

Integral length scale & turbulence intensity

Integral length scale

Turbulence intensity

$$l(r) = \int_0^\infty \rho(r, r^*) dr^* \quad \rho(r, \Delta r) = \frac{\overline{u'_x(r)u'_x(r + \Delta r)}}{\overline{u'_x^2(r)}}; \Delta r = |r - r^*| \quad T.I. = \frac{u_{rms}}{u_{mean}} \quad 9$$

LES Mean Temperature Contours on Z=0 Plane

Axial Temperature Profiles with CO2 Addition

LES RMS Temperature on Z=0 plane

T_RMS comparison between CARS and LES

Centerline RMS temperature

Temperature comparison between CARS and LES

Temperature comparison between CARS and LES

Thin or Purely Wrinkled Flame Assumption is not adequate!

Effect of CO2 on the chemistry of turbulent flames with EGR are captured in the present computations!

OH PLIF video for flame with 0% CO₂ addition

Φ=0.8, Re=10000

OH PLIF video for flame with 5% CO₂ addition

Φ=0.84, Re=10000

OH PLIF video for flame with 10% CO₂ addition

Φ=0.89, Re=10000

OH PLIF Images & Data Processing

Mean Reaction Progress

Flame Surface Density

Radial flame brush development Axial flame brush development

0 < x/D < 3.6

3.6 <x/D<6.5

Global Consumption Speed

Local Consumption Speed

w/o pockets

x/D

1.5

1.0

0.5

⊿ 0.0 2.5

RMS values of $S_{T,LC}/S_{L0}$

Fine-scale Unburned Pocket Consumption

Fine-scale pocket: a pocket does not break up into smaller ones with flame-flame interaction

CH PLIF: Wavelength & Signal Strength

 $\phi = 1.0$

CH PLIF video for flame with 0% CO₂ addition

Φ=1, Re=10000

CH PLIF video for flame with 5% CO₂ addition

Φ=1, Re=10000

CH PLIF video for flame with 10% CO₂ addition

Φ=1, Re=10000

CH-OH PLIF video for flame with 0% CO₂ addition

Φ=1, Re=10000

CH-OH PLIF video for flame with 5% CO₂ addition

Φ=1, **Re=10000**

CH-OH PLIF video for flame with 10% CO₂ addition

Φ=1, Re=10000

CH PLIF & Simultaneous CH and OH PLIF

Challenging for lean premixed flames with CO₂ dilution due to low CH signal

IR imaging video for CH₄/air flame

Instantaneous IR images

Time Averaged Radiation Model Validation

Turbulence radiation interaction (TRI) modeling: Stochastic time and space series analysis (STASS)

$$I = \int_{\lambda_1}^{\lambda_2} \alpha_{\lambda} I_{\lambda}(0) e^{-\tau_{\lambda}} d\lambda + \int_{\lambda_1}^{\lambda_2} \int_0^{\tau_{\lambda}} \alpha_{\lambda} I_{b\lambda}(\tau_{\lambda}^*) e^{-(\tau_{\lambda} - \tau_{\lambda}^*)} d\tau_{\lambda}^* d\lambda$$

Temperature Deconvolution

Computed temperature vs thin filament thermometry

Computed temperature vs CARS thermometry

High Pressure PARAT Experiments and LES

Temperature contour for a snapshot on Plane Z=0

Summary & Conclusions

1. Developed a <u>PARAT burner</u> and demonstrated multiple diagnostic methods including <u>PIV, CARS, OH/CH PLIF and IR</u> <u>imaging</u> for turbulent premixed combustion applications.

2. Performed a comprehensive investigation of the <u>non-</u> <u>thermal effects</u> of CO_2 addition on turbulent premixed combustion for the first time.

3. CO₂ addition extends <u>flame length</u>, Modifies <u>flame brush</u> to be longer and thinner, alters <u>local flame surface area</u>, reduces <u>burning velocities</u>, and enhances <u>pocket formation</u> with negligible effects on <u>pocket consumption speed</u>

4. Developed <u>LES simulation tool</u> for $CH_4/air/CO_2$ flames and validated using temperature and velocity measurements

Appendix Flame operating conditions

Flame #	1	2	3
Reynolds number (± 50)		10000	
Adiabatic Temperature (± 50 K)		2030	
Equivalence ratio (± 0.02)	0.80	0.84	0.89
CO ₂ % by total mass (± 0.1)	0.0	5.0	10.0
CH ₄ mass flow rate (± 2 mg/s)	111	110	109
Air mass flow rate (± 20 mg/s)	2440	2300	2150
CO ₂ mass flow rate (± 4 mg/s)	0.00	124	246
Pilot H ₂ mass flow rate (± 0.03 mg/s)	2.7		
Pilot H ₂ heat release percent of total (%)	6		
Lewis number	1		
Laminar flame speed (cm/s)	34	30	25
Laminar flame thermal thickness (µm)	70	80	90
RMS turbulence fluctuation (m/s)		1.7	
Integral length scale (mm)	1		

40

Appendix

Cold flow Results with RANS based RNG k-E model

Good Agreement with Hot wire anemometer measurements

Appendix CFD Domain and BCs - Reacting

36D x 64D x 36D, D= 18 mm

Premixing Tube Excluded to Reduce Computational Time