In-situ optical monitoring of gas turbine blade coatings under

Background & Motivation

Leading edge research in the field of aviation- and land-based gas
turbines’ high-temperature material systems has been driven by
extreme hot gas path environments in power generation and

propulsion.

Thermal barrier coatings (TBCs) are designed to sustain a high thermal
gradient through their thickness, to protect the underlying load-
bearing material. This enables higher temperatures at the turbine inlet,
increasing efficiency, and extends the lifetime of the coated parts.

Processes that limit the durability of TBCs, including oxidation, creep,

and thermo-mechanical fatigue of hot section

materials, are activation-

energy-barrier controlled. This means that a small increase in
temperature can have significant effects on the remaining life,

especially when materials are operated near
some high temperature limit.

Accurate temperature sensing of these coatings in operation is critical
to achieving the optimal balance between engine efficiency and
component life. Direct strain measurements are equally valuable and
less easily achieved. Both of these critical measurement parameters
have the potential to be accurately obtained with the development of

optical measurement techniques.

Objectives

Overall goal: Develop a suite of advanced

optical technologies for

enhanced monitoring of gas turbine thermal barrier coatings (TBCs),

and demonstrate at the laboratory scale.

Objectives:

* Define, design, and produce the sensor configuration
 Select dopant material, considering sensing properties,
manufacturing configuration, and testing configuration.

 Use nonlinear finite element (FE)

models to predict the

temperature profiles on the surface of doped material with no

surface defects.

« Establish the sensing properties of the luminescence-based sensor
* Test candidate samples at high temperature to determine the
relationship between temperature and luminescence lifetime,

in conjunction with well-established measurement techniques.

* Conduct real-time strain measurements through the coating’s
thickness under thermal cycling, using an advanced photon

source.

* Add surface defects to FE model and compute temperature

profile for selected dopants.

* Perform non-intrusive benchmarking measurements of surface

temperature and strain

 Develop a metric to quantify temperature measurement

inaccuracies; evaluate methods of
parts.

monitoring hot coated

* Develop an advanced digital image correlation (DIC) system to
perform high speed imaging concurrently with the

luminescence measurements.
 Integrate the optical sensors into
instrumentation package.
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operational extreme environments
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Approach

Manufacturing and processing of sensing
coating architectures

Multi-physics modeling to define sensing
material configuration
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and mechanics evolution
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Background:

« Digital image correlation (DIC) is a well-established optical
measurement technique.

A speckle pattern is applied to the sample, which is then
photographed before and during thermal and mechanical
loading. Software tracks the displacement of the speckles to
calculate strain.

Goals:

* Advance DIC techniques to achieve:

* high speed imaging;
* at high temperatures;
* simultaneously with luminescence-based sensing.

Background:
Certain dopants among the rare earth elements and transition metals
emit photons of characteristic wavelength when excited with a laser.
The luminescence lifetime is a function of temperature.
The wavelength emitted is a function of the strain imposed on the
dopant.
These materials therefore act as temperature- and stress-sensors.

Goals:

 Test candidate samples in situ to establish their luminescence
response at high temperatures.

* Determine optimal dopant for coatings.
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* Obtain real-time strain measurements of the doped coating while subjecting it
to thermal cycling conditions.
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