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Gas out to mass spec.
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I.D. 2 mm

I.D. 4 mm

Quartz frit

• Temperature programmed desorption (TPD)  
– Ramp temperature in He to determine adsorbed species  

• Temperature programmed oxidation (TPO)  
– Ramp temperature in O2 gas mixture to determine reaction rates 

• Isotope exchange (16O vs. 18O) 
– Switch gas to separate solid vs gas species contribution to mechanism

Background - Fundamental ORR Mechanisms
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• Temperature programmed desorption (TPD)  
– Ramp temperature in He to determine adsorbed species  

• Temperature programmed oxidation (TPO)  
– Ramp temperature in O2 gas mixture to determine reaction rates 

• Isotope exchange (16O vs. 18O) 
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Fundamental ORR Mechanisms - O2 Dissociation

Developed 1:1 Isothermal 
Isotope Exchange (IIE) to give 
specific O2-dissociation rates 

Increase in [16O18O] with 
temperature until 
achieves 50%(maximum 
statistical conversion)

Providing first ever 
direct measurement of 
O2 dissociation rates
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D2O and O2 exchange with 
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Temperature and PO2 Dependence of LSCF in D2O
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AND
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Accumulated Isotopic Fraction exchanged from 18O LSCFRepeating exchange 
experiments as function of 
PO2, PH2O and temperature



Two Exchange Peaks: 
• As PO2 increases, 300ºC peak decreases 
• 450ºC peak still present at high PO2

Temperature and PO2 Dependence of LSCF in D2O

• We mapped out H2O and CO2  
impact on ORR as function of PO2, 
temperature, and concentration

Exchange as function of 
PO2, PH2O and temperature

P
ercent H

2 O
 exchanged
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Water Exchange on LSCF vs LSCF-GDC Composite Cathodes

• LSCF composite significantly broadens temperature range of 
water exchange dominance

• Demonstrating importance of TPBs and co-existence of 
O-dissociation and O-incorporation phases
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Water Exchange on LSM vs LSM-YSZ Composite Cathodes

LSM

• LSM-YSZ composite demonstrates much greater water exchange 
than LSM or YSZ at much lower temp 

• Composite effect for LSM-YSZ much greater than for LSCF-GDC

• Demonstrating importance of TPBs and co-existence 
 of O-dissociation and O-incorporation phases



Water & CO2 Exchange on LSM vs LSM-YSZ Cathodes

• XPS shows LSM-YSZ 
composite has 
decreased Mn oxidation 
state relative to LSM 
which are compensated 
for by increase in local 
VO concentration  

• EELS shows change in 
Mn oxidation state is 
localized to LSM-YSZ 
interface 



Water & CO2 Exchange on LSM vs LSM-YSZ Cathodes

• XPS shows LSM-YSZ 
composite has 
decreased Mn oxidation 
state relative to LSM 
which are compensated 
for by increase in local 
VO concentration  

• EELS shows change in 
Mn oxidation state is 
localized to LSM-YSZ 
interface 

• LSM surface dissociates D2O and CO2 but bulk does not incorporate O

• In LSM-YSZ composite dissociated O transports to YSZ interface for incorporation
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The presence of 3% H2O effects the low frequency arc at 450ºC 
but not at 750ºC consistent with the results obtained from ISTPX.

 LSCF-GDC
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The presence of 5% CO2 effects the low frequency arc at 450ºC 
and at 750ºC consistent with the results obtained from ISTPX.
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ORR Reaction Mechanisms in Presence of Cr

LSCF exposed to air flowing 
over Crofer 22 for 1 week

Cr shifts O-exchange to 
higher temperature

Dry Air Wet Air

Directly measure Cr affect on O2-dissociation 
dry and 3% H2O

O2 dissociation and exchange rates 
decrease upon Cr exposure, worse when wet 
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In-Situ Conclusions/Outcomes

but all done under absence of applied bias with no charge transfer…

• Determine fundamental ORR rates for LSCF, LSM, 
and their composites and for first time was able to 
directly measure O2 dissociation

• Demonstrate H2O and CO2 actively participate in ORR 
for both LSCF and LSM and identified temperature and 
gas composition regions where H2O dominates O2 surface 
exchange and where they are less important

• Identify significant composite cathode effect on surface 
exchange with H2O and CO2 

• Demonstrate Cr vapor exposure decreases O2 
dissociation and exchange rate and is made worse in 
ambient moisture

Developed multiple (IIE, 1:1 IIE, ISTPX) O-isotope exchange techniques that enabled us to:



Phase 1 In-Operando Isotope Exchange System
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• Develop in-operando apparatus for the study of SOFC cathode oxygen surface exchange 
properties, under operating conditions of applied voltage / current. 

• Determine surface exchange mechanisms and coefficients using in-operando 18O-isotope 
exchange of LSM and LSCF powders, and their composites with YSZ and GDC.
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In-Operando

O2 + 2VO•• + 4e’ = 2OOx

• Develop in-operando apparatus for the study of SOFC cathode oxygen surface exchange 
properties, under operating conditions of applied voltage / current. 

• Determine surface exchange mechanisms and coefficients using in-operando 18O-isotope 
exchange of LSM and LSCF powders, and their composites with YSZ and GDC.
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behavior under applied bias with in-situ 
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In-Operando Determination of LSCF kex as Function of Potential

• Demonstrated kinetic difference is from IIE 
applied potential and not Faradaic O2 pumping (Ie)

• In-operando determination of LSCF surface 
exchange as a function of cathodic bias 

• Follows Tafel relationship (η vs Ln(I))

V = η + IR
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• Under no polarization, the fitting of accumulation 
profiles to obtain exchange rate (R*ex):
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• Under no polarization, the fitting of accumulation 
profiles to obtain exchange rate (R*ex):

• The 3D exchange rate coefficient, kex, under 
polarization (D – particle diameter):

• Implementing the Tafel relation between I and η:
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relationship between surface exchange 
coefficient and electrochemical overpotential 
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• Potentially first ever unifying theory for kex 
between isotope exchange (IIE, IEDP) and 
electroanalytical (e.g., ECR) techniques 
- dashed lines from equation  

using open circuit kex 
and cell Tafel results
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Consistent with Electrochemical Principles: 
• At high overpotential best fit is by 
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In-Operando Determination of kex as Function of Potential

Consistent with Electrochemical Principles: 
• At high overpotential best fit is by 

logarithmic Tafel relation 

• At low overpotential best fit is by 
linear Butler-Volmer relation
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• Developed an in-operando apparatus for the study of SOFC cathode 

oxygen  surface  exchange  properties  under  operating  conditions  of 
applied voltage / current

• For the first time determined the oxygen surface exchange coefficient 
(kex) in-operando as a function of applied electric potential with in-situ 
18O-isotope exchange

• Developed  direct  relationship  between  electrochemical  (I-V) 
performance  and  kex  as  well  as  unifying  theory  to  relate  isotope 
exchange obtained kex to other electroanalytic (e.g., ECR) techniques

• This technique now enables the direct determination of fundamental 
ORR mechanisms (such as kdissociation  and kexchange) and the affect of 
H2O,  CO2,  and  Cr  and  other  contaminants  on  ORR  kinetics  and 
degradation mechanisms as a function of applied polarization


