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➢ Tuned parameters and comparison to literature results

➢ Contributions from pathways
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➢ Parallel pathways of ORR mechanism
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➢ Motivation

• As the main source of energy loss in

SOFCs, oxygen reduction reaction (ORR)

process of LSM based cathode is of great

interest. However, the fundamentals such

as kinetic mechanism of the ORR remain

unclear.

• For an in-depth understanding of

electrodes, a reaction model involving

elementary reaction steps is more suitable

than models for global reactions, e.g.

Butler-Volmer model.

• The calibration of multistep ORR

mechanism is lacking in the past literature

due to the incredible complexity from a

large number of parameters.

➢ Purpose of the study

• A comprehensive numerical model with

parallel pathways for oxygen reduction

reaction (ORR) in a composite cathode was

developed to gain insights from real solid

oxide fuel cell (SOFC) button cell data.

Calibrated V-I curves and  impedance behavior for three air/fuel supply conditions and impedance contribution from electrodes 

sketch of  button cell

sketch of  ORR mechanism

3PB and 2PB contributions to the total performance at various operating conditions. 

parameters variables & unites present study literature results

interfacial area between LSM and Pore 𝒂𝑳𝑷 (𝑚
−1) 7.414 × 106 1 × 106 ~ 1 × 107

interfacial area between LSM and YSZ 𝒂𝑳𝒀 (𝑚
−1) 7.414 × 106 1 × 106 ~ 1 × 107

double-layer capacitance 𝑪𝑫𝑳,𝒄 (𝐹 𝑚
−2) 2.975 0.1~27

bulk diffusion coefficient 𝑫𝒃 (𝑚
2 𝑠−1) 1 × 10−9 1 × 10−10 ~ 1 × 10−9

surface diffusion coefficient 𝑫𝒔 (𝑚
2 𝑠−1) 1 × 10−9 1 × 10−10 ~ 1 × 10−9

density of  adsorption sites at LSM/Pore interface 𝜞 (𝑚𝑜𝑙 𝑚−2) 1 × 10−5 1 × 10−5 ~ 1 × 10−4

equilibrium Concentration of  adsorbed surface oxygen ion 𝑪𝑶𝒆𝒒− (𝑚𝑜𝑙 𝑚−2) 3 × 10−6 1 × 10−7 ~ 1 × 10−6

equilibrium Concentration of  adsorbed surface oxygen ion at 3PB 𝑪𝑶𝑻𝑷𝑩,𝒆𝒒
− (𝑚𝑜𝑙 𝑚−2) 3 × 10−7

coverage of  adsorbed oxygen on LSM 𝜽𝑶,𝒆𝒒 0.03 0.01 ~ 0.1

equilibrium concentration of  oxygen vacancy in LSM 𝑪𝑽,𝑳𝑺𝑴,𝒆𝒒 (𝑚𝑜𝑙 𝑚
−3) 1 × 10−1 1 × 10−2 ~ 1 × 10−1

equilibrium concentration of  oxygen vacancy in YSZ 𝑪𝑽,𝒀𝑺𝒁,𝒆𝒒 (𝑚𝑜𝑙 𝑚
−3) 5 × 103

backward rate constants of  S1 at reference state 𝒌𝑺𝟏
− (𝑠−1) 6.002 × 103

net rate of  S2 at reference state 𝒓𝑺𝟐,𝟎 (𝑚𝑜𝑙 𝑚
−2 𝑠−1) 3.001 × 10−4 1 × 10−4 ~ 1 × 10−3

forward rate constants of  S3 at reference state 𝒌𝑺𝟑 (𝑠
−1) 6.002 × 102

net rate of  S4 at reference state 𝒓𝑺𝟒,𝟎 (𝑚𝑜𝑙 𝑚
−2 𝑠−1) 2.5 × 10−3 1 × 10−2

net rate of  B3 at reference state 𝒓𝑩𝟑,𝟎 (𝑚𝑜𝑙 𝑚
−2 𝑠−1) 1.05 × 10−4 1 × 10−3 ~ 1 × 10−2

net rate of  B4 at reference state 𝒓𝑩𝟒,𝟎 (𝑚𝑜𝑙 𝑚
−2 𝑠−1) 1 × 10−2 1 × 10−3 ~ 1 × 10−2

Conclusions
• The calibrated results indicate that surface adsorption and dissociation is the rate-determining step for the cell

data under study, which is consistent with the literature findings.

• The overall cell performance can be attributed to the combination of the surface adsorption and dissociation

step, charge transfer steps in parallel pathways, and diffusion phenomena.


