Development of a Thermal Spray, Redox Stable, Ceramic Anode for Metal Supported SOFC

Richard Hart
GE Global Research
Pitt Review June 12, 2017

Imagination at work. SOFC Innovative Concepts and Core Technology Research
DE-FOA-0001229 Award FE0026169
Advantages:
Integrated anode seal
Electrolyte in compression
Improved anode electrical contact
Increased active area
Lower anode polarization

Challenges:
Dense / hermetic electrolyte
Porous metal substrate degradation
Low-cost manufacturing

Sintered Cell Manufacturing

Advantages
Larger area / Scalable
Simplified sealing
Low Capex / Modular
Lean Manufacturing

Thermal Spray

Leverage GE thermal spray expertise
Traditional NiO(Ni)/YSZ anodes

• Advantages:
 – High initial electrochemical activity
 – Good electronic conductivity
 – Low cost
 – Well understood, wealth of data

• Disadvantages:
 – High redox Vol change (fuel↔air)
 – Ni particle ripening/poisoning
 – EHS concerns (NiO)
 – Sourcing concerns (REACH in Eu)
2017 Project Goals:

Transition WVU Set 2 Materials to GE Thermal Spray

Metal Supported SOFC Cell (100cm2) with:

- >200 mW/cm2 on Reformate Fuel ($>50\%$Uf, 0.7V)
- $<10\%$ Degradation after 1000h (or >180mW/cm2)
- >3 Redox Cycles
- ~Equivalent Materials Cost and Process vs. Baseline
Cell Testing & Thermal Spray Film Results
Y1 Review – Metal Supported Ceramic Anode Cells

Sourced Engineered Powders

- LST ($La_{0.35}Sr_{0.65}TiO_3$)
- GDC ($Gd_{0.2}Ce_{0.8}O_{1.9}$)

Coupon Screening Experiments (Thermal Spray)

- XRD, SEM, Permeability,
- DE, Roughness, etc...

100cm² Cells

(2-6 cell stacks)

- OCV, W/cm²
- Redox Stability
Redox Cycling – (2 cell stacks)

Ni/YSZ cells fail after a single redox cycle

Ceramic anode cells survive > 5 cycles

LST/GDC cells = Low power (55-130mW/cm²) – H2/N2 fuel
Inherently low material conductivities (e-)

Failure!

Stable!
Optimization Experiments: LST-GDC co-spray

- Co-Spray Experiments investigated:
 Plasma power
 Feedstock powder calcination
 Powder injection parameters

- Results limited to < 130 mW/cm²
 *Rxn to form new phase
 *Low film conductivity (LST)

Film conductivity
Good Cohesion
Stiffness/Cracking
Rxn Phase formation

“Hotter”
“Cooler”

Porosity
TPB - m²/g
Low Cohesion

Need alternate formulation/method to achieve >200 mW/cm²
LST-GDC Electrodes: Microstructure, film XRD

Red = Hot, GRC
Orange = Hot, Vendor B
Dark Green = Cool, GRC
Light Green = Cool, Vendor B
Blue = coldest cond, Vendor B

- Process opt minimized LST+GDC Reaction
 *3Q-4Q: alternate methods of GDC/YSZ integration: infiltration/co-feed

Variation in feedstock agglomerate size → variation in microstructure/phase/cond
- Confirmed this is a key factor to control
- 2nd Learning: use larger scale up batches (less re-optimization needed)
Deactivation of doped SrTiO3 (no GDC) in Thermal Spray

XPS High Resolution Spectra
after 1um etching– Chemical Bonding

- Chemically deactivation of doped SrTiO3!
- 2017 Q1-Q2 – noted process changes can be made to reduce/eliminate this effect

Improved thermal spray film S/cm ~40-100x
Achieved sufficient film S/cm (anode chemistry & thermal spray conditions)
Next step: focus/balance electrode microstructure +catalyst prop
GE Ceramic Anode Material Screening Test Results
Material Development Testing Plan

Synthesis
• XRD - impurities
• Particle Size

Conductivity Testing
• Screen w/ pressed pellets or free-standing films
• Electron Conductivity > 10S/cm (bulk), >5 S/cm (film)
• Ion Conductivity > 0.5x10^{-2} S/cm (film)

Mechanical Stability During Redox Cycling (800C)
• Redox Vol. Change < 0.15% ΔV – redox dilatometry

SOFC Cell Testing
• GRC – thermal spray 100cm2 metal supported cells (2-6 cell stacks)
Conductivity Test Setup (GE-GRC)
LST Conductivity – Effect of Sintering Atm, and Redox:

LST – 1450C sintered, effect of atm:

LST 1450C, H2 sintering
LST 1450C, Air sintering

Solatron 1287/1260, 4pt, AC impedance, ~1kHz

LST Pellet Conductivity – Redox Cycling

E-chem Model -> need to identify materials w/ >10-20S/cm after redox
Summary of doped Strontium Titanate Screening - GE

<table>
<thead>
<tr>
<th>Factor</th>
<th>Conditions/Ranges:</th>
</tr>
</thead>
<tbody>
<tr>
<td>A dopant</td>
<td>RE (La, Y, Yb, Lu, Gd, etc...) [0.01>x>0.4]</td>
</tr>
<tr>
<td>A-site Def</td>
<td>0-10%</td>
</tr>
<tr>
<td>B dopant</td>
<td>Fe, Nb, Ga, etc.. [0.02>y>0.1]</td>
</tr>
<tr>
<td>Firing Temp</td>
<td>1200°C-1500°C</td>
</tr>
<tr>
<td>Firing Steps</td>
<td>1-4</td>
</tr>
<tr>
<td>Milling</td>
<td>Water/EtOH, time</td>
</tr>
<tr>
<td>Firing Batch</td>
<td>Qty/vessel (g), Crucibles vs. Tray</td>
</tr>
<tr>
<td>Gas</td>
<td>Air, different Reducing Gases</td>
</tr>
<tr>
<td>Precursors</td>
<td>oxides, carbonates, other salts</td>
</tr>
</tbody>
</table>

Over 100 tested batches @ GE! (~10g size)

XRD and Redox S/cm

Identified several Promising leads!
Alternately Doped SrTiO₃ – leading candidate

Redox Conductivity:
- Excellent conductivity
- Good redox stability

Redox Dilatometry:
- Excellent mechanical redox properties
- Material was selected for scale up to larger batch sizes
Scale up of Alternately Doped SrTiO3

Scale Up 1: 10g -> 1kg std gas env

Scale Up 2: Altered reducing gas environment

Boxplot of Sample Conductivity: Effect of Redox cycling and Batch Size

<table>
<thead>
<tr>
<th>Batch</th>
<th>Pressing Cond</th>
<th>Sintering Cond</th>
<th>Initial Cond (S/cm)</th>
<th>PostRedox1 (S/cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC-0202-S1</td>
<td>Std</td>
<td>Std</td>
<td>41.2</td>
<td>38.7</td>
</tr>
<tr>
<td>FC-0202-S1</td>
<td>Std</td>
<td>Std</td>
<td>45.2</td>
<td>41.8</td>
</tr>
<tr>
<td>FC-0202-S2</td>
<td>Std</td>
<td>Std</td>
<td>52.1</td>
<td>45.5</td>
</tr>
<tr>
<td>FC-0202-S3</td>
<td>Std</td>
<td>Std</td>
<td>1.7</td>
<td>0.97</td>
</tr>
<tr>
<td>FC-0202-S4</td>
<td>Std</td>
<td>Std</td>
<td>18.1</td>
<td>12</td>
</tr>
<tr>
<td>FC-0202-S4</td>
<td>Std</td>
<td>Std</td>
<td>45.9</td>
<td>43.1</td>
</tr>
<tr>
<td>FC-0202-S5</td>
<td>Std</td>
<td>Std</td>
<td>55.3</td>
<td>51.4</td>
</tr>
</tbody>
</table>

May: Produced 17kg batch, Thermal Spray in July

1st compound scaled from 10g → 1000g → 17000g!

Factors: tray type, gas environment/flow, mixing & milling methods, precursors, etc..

Goal: Scale up ~2-3 more down-selected candidates by Fall 2017

GE currently has 2 formulations in the beginning stages of Scale Up
WVU & GE
Layered Perovskite Development
Formulation Development Summary:

GE Global Research:
- Pivot: added on ceramic synthesis efforts:
 * Studied doped SrTiO$_3$
 * Scale up of WVU formulations -> Vendor Transition

WVU:
- Higher Risk formulations:
 * Scheelites – showed low S/cm or mech instability
 * Layered perovskites – SrMoO$_3$
 -Current focus of WVU research.
 -GE currently trying to scale 2 formulations
Summary of Layered Perovskite Development:

<table>
<thead>
<tr>
<th>Comp</th>
<th>Cond (S/cm)</th>
<th>Mech Redox (dV)</th>
<th>CTE (ppm/C)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SrMgMo</td>
<td>50</td>
<td>+</td>
<td>14.78</td>
<td>S/cm reduces with redox cycling</td>
</tr>
<tr>
<td>SrFeMo</td>
<td>20-148</td>
<td>--</td>
<td>NA</td>
<td>Poor redox stability</td>
</tr>
<tr>
<td>SrFeCoMo</td>
<td>7.4</td>
<td>-</td>
<td>20.39</td>
<td>Higher S/cm in air</td>
</tr>
<tr>
<td>SrMgMo (2)</td>
<td>~30</td>
<td>++</td>
<td>15.6</td>
<td>Improved Redox Stability vs baseline SMM</td>
</tr>
<tr>
<td>Doped - SrFeMo</td>
<td>15-22</td>
<td>+++</td>
<td>15.01</td>
<td>Mech and S/cm redox stability</td>
</tr>
</tbody>
</table>
SMM Formulation Variation Study:

- Identified higher performing SMM formulations (only 1 variant shown)
- continuing optimization work & scale up

Baseline SMM

Baseline Sr₂MgMoO₆-δ

Comp B

Redox S/cm

Redox Dil
Redox Dilatometry and Conductivity of SFM vs doped-SFM

Doping improved redox S/cm stability, Mechanical stability, And lowered CTE

Initial scale up studies underway

CTE in Air, 25-800°C = 17.12x10⁻⁶ K⁻¹

CTE in Air, 25-800°C = 15.31x10⁻⁶ K⁻¹
Summary

- 100 cm² LST-GDC co-spray anodes: achieved redox stability but limited <130 W/cm²
 - Reactive phase formation, limited film conductivity (SrTiO₃ deactivation)

- GE identified methods to improve film conductivity through process opt
 - Thermal spray focus shifting to microstructure optimization

- Identified several candidates for scale up: (1) doped SrTiO₃ (2) doped SFM

- Goal – scale up 3-4 promising down-selected candidates by Fall

Demonstrate higher power, ceramic anode, metal supported SOFC cells
Acknowledgements

• GE Fuel Cells SOFC Team
• GE Global Research Team
• WVU (Dr. Sabolsky, Dr. Liu, Dr. Zondlo, & team)
• Steven Markovich @ DOE/NETL

• Funding provided by the US Department of Energy through cooperative agreement FE0026169

This material is based upon work supported by the Department of Energy under Award Number FE0026169. However, any opinions, findings, conclusions, or recommendations expressed herein are those of the authors and do not necessarily reflect the views of the DOE.
GE Team:

Rich Hart

Larry Rosenzweig, Bastiann Korevaar
Dave Dynan

Stephen Bancheri, Susan Corah

Erik Jezek, Becky Northey, Jim Gardner

Dayna Kinsey, Luc Leblanc, Matt Alinger
Todd Striker, Andy Shapiro, Simon Gaunt

Mike Vallance

Jae Hyuk Her, Erik Telfeyan, Matt Ravalli

Johanna Wellington, Steve Duclos,
Katharine Dovidenko, Wei Cai

PI, testing & direction

Thermal Spray GRC

Powder development

Materials testing, microstructure & degradation

GE Fuel Cells, scale up Thermal Spray
Systems Support

Echem Model

Analytical Support

GE Management Support
WVU Team

Principle Investigators:
Dr. Xingbo Liua
Dr. Edward M. Sabolskya
Dr. John Zondlob

Research Assistants:
Dr. Tony Thomasa
Laura (He Qi)a

aDepartment of Mechanical and Aerospace Engineering
bDepartment of Chemical Engineering
West Virginia University