Catalytic PRB Coal-CO₂ Gasification for Fuels and Chemicals with Two Different Types of Syngas $(1^{st}-CO + zero CH_4; 2^{nd}-H_2:CO:CH_4 = 2:1:near-zero)$ and Negative or Low CO₂ Emissions Qinxi Cao¹, Wenyang Lu¹, Bang Xu¹, Maohong Fan^{1,2,*}

- ¹ Departments of Chemical & Petroleum Engineering, University of Wyoming, Laramie, WY, 82071, USA
- ² School of Energy Resources, University of Wyoming, Laramie, WY, 82071, USA
- *Corresponding Author and Principal Investigator: email: mfan@uwyo.edu; phone: (307) 766 5633

Results

Objective

- **Pyrolysis** gasification catalytic of Development a
- technology with the characteristics of zero CH_4 and negative/low CO₂ generations

Specific Goals

- Reduce CH₄ and CO₂ by 30% and 50%, respectively
- Increase H₂ in the gas from pyrolysis at least 20%
- Generate CO with near 0 CH_4 in CO₂-char gasification
- Produce syngas with H_2 : CO = 2:1 and < 0.5% CH₄

Yield of H_2 at 700 °C (a) at 800 °C (b)

- (a) Molar yields of H_2 vs loadings of Na and pyrolysis temperature; (b) Molar yields of CO vs loadings of Na and pyrolysis temperature.
 - Increases by 121.47 % with 3% Na-1%Fe catalyst at 700 °C Increases by 65.90 % with 3% Na-1 % Fe catalyst at 800 °C
 - Increases with the decrease in temperature

• Reduce activation energies by 30-50%

 N_2

CO

Yields of H₂

- Increases by 66.70 % with 4% Na catalyst at 700 °C
- Increases by 38.10 % with 4% Na catalyst at 800 °C
- H₂ increases with the decrease in pyrolysis temperature **Yields of CO**
- Increases by 16.79 % with 4% Na catalyst at 700 °C
- Increases by 54.49 % with 2% Na–2 % Fe catalyst at 800 °C
- CO increases with the temperature

Schematic diagram of catalytic coal gasification with CO₂ [(1a) N₂, (1b) CO₂, (1c) Ar; (2) mass flow controller; (3) (a) Molar yields H₂ and CO generated from coal pyrolysis at heating tapes; (4) thermocouples and temperature scanner; (5) temperature 600, 700 and 800°C, respectively; (b) Molar tube furnace; (6) ceramic wools; (7) coal sample; (8) yields CH₄ and CO₂ generated from coal pyrolysis at temperature controller for heating tapes; (9) tar collector; (10) temperature 600, 700 and 800°C, respectively water-cooled condenser; (11) water-trap; (12) micro GC; and (13) data acquisition system].

Conversion of carbon

Yield of H₂

Change of carbon conversion rates with time during char- H_2O gasification at 700°C

- Needs only 200 min for gasifying char with 4% Na and 5.56 mmol-H₂O/min, \sim 50% time needed for gasifying the same amount of char without use of catalyst
- Increases with the amount of H₂O used

Yields of CH₄

Photo of one experimental set-up

Operating conditions

- Temperature range: 600 to 900°C
- Pressure range: Atmosphere to 10.0 bar
- Catalysts: Na-based, Fe-based, and Na-Fe based

- Decreases by 22.22 % with 4 % Na catalyst at 700 °C
- Decreases by 23.40 % with 2 %Na-2 %Fe catalyst at 800 °C
- Slightly increases with temperature Yields of CO₂
- Decreases by 8.62 % with 3% Na 1% Fe catalyst at 700 °C
- Decreases by 22.22 % with 4 %Na catalyst at 700 °C

H₂: CO Ratio in the generated syngas

- 2.19 with 4 % Na catalyst at 700 °C
- 2.13 with 1 % Na-1 % Fe catalyst at 700 °C
- 1.93 with 4 % Fe catalyst at 700 °C
- 1.92 with 4 % Na catalyst at 800 °C
- 1.91 with 4 % Fe catalyst at 800 °C

Gasification

Due to uses of the catalysts -

- The total amount of CH_4 generated with both pyrolysis and gasification steps can be neglected
- The total amount of H₂ generated with both pyrolysis and gasification steps are significantly increased
- The total amount of CO generated with both pyrolysis
 - and gasification steps are significantly increased
- The total amount of CO₂ generated with both pyrolysis
 - and gasification steps are significantly decreased
- The ratio of H₂:CO in syngas generated with both pyrolysis and gasification steps are significantly increased
- **Carbon conversion kinetics can be considerably** improved.

• N_2 flow rate: 15 ml/min

(a) CO accumulation with reaction time during char

gasification at 600 °C; (b) CO accumulation with reaction time

during char gasification at 700 °C

• Increases by 39.06 % with 4% Na catalyst at 700 °C

