

U.S. DEPARTMENT OF

Advancing Coal Catalytic Gasification to Promote Optimum Syngas Production

Francine Battaglia and <u>Ryan M. Soncini</u>, Virginia Tech Foster A. Agblevor and Oleksandr Hietsoi, Utah State University Michael T. Klein and Craig Bennett, University of Delaware

1 - Fluidized bed reactor
3 - Thermocouple
4 - Mass flow controller
5 - Jacketed air-cooled
feeder tube
6 - Hopper
7 - Screw feeder
8 - Computer
9 - Heating tape
10 - Hot gas filter
11 - Reservoir
12 - Condenser
13 - ESP
14 - AC power supply
15 - Filter
16 - Wet gas meter
17 - Gas chromatograph

Product gases (mol, %) for coal gasification on RM under N₂ and under N₂ & Steam

coal gasification on RM under N ₂											
0	H ₂	CH_4	CO	CO ₂	C_2-C_4	O ₂	N ₂	Σ_{Gases}			
1	5.032	0.809	1.442	1.988	0.480	0.059	89.690	99.50			
1	5.939	0.862	2.373	2.933	0.121	0.036	86.521	98.79			
1	8.264	0.938	5.161	3.010	0.367	0.040	80.052	97.83			
CO	al gasifi	cation or	n RM un	der N_2 8	& Steam						
1	8.563	1.195	1.826	5.258	0.703	0.058	81.954	99.56			
1	16.94	1.641	7.069	6.725	0.785	0.027	66.017	99.21			
1	24.17	1.944	13.81	8.298	0.555	0.027	49.949	98.76			

Product liquids, solids, and gases (wt, %)

Coal on RM under N ₂				Coal on	on RM under N ₂ & Steam				
., %	Liquid	Solid	Gas	Moist., %	Liquid	Solid	Gas		
19	29.58	43.20	27.22	23.96	19.36	54.06	26.58		
33	27.57	42.78	29.65	22.52	17.08	40.81	42.11		
94	20.97	29.61	49.42	21.55	13.94	31.87	54.19		

Coal Gasification under CO₂ and Steam on RM

Product gases (mol, %) for wet coal gasification under N₂ and CO₂ on RM

(mol, %) for wet coal gasification under N_2 on RM									
H ₂ : CO	H ₂	CH ₄	CO						
2.5 : 1	5.94	0.86	2.37						
1.6 : 1	8.26	0.94	5.16						
(mol, %) for wet coal gasification under CO ₂ on RM									
1:3.1	6.11	1.81	18.97						
fo <mark>r wet coal g</mark> a	sification on R	M under N ₂ & S	Steam						
2.4 : 1	16.94	1.64	7.07						
1.8 : 1	24.17	1.94	13.81						
ol, %) for wet coal gasification under CO ₂ and Steam on RM									
1:1.3	19.43	1.94	25.05						
1:1.95	17.88	2.20	34.91						

Product liquids, solids, and gases (wt, %)

M under N ₂									
	Moisture, %	Liquid	Solid	Gas by dif.					
	24.33	27.57	42.78	29.65					
	24.94	20.97	29.61	49.42					
r CO ₂ on RM									
	24.11	37.03	43.56	19.41					
Мu	nder N ₂ & Steam								
	22.52	17.08	40.81	42.11					
	21.55	13.94	31.87	54.19					
M under CO ₂ and Steam									
	24.90	26.34	34.03	39.63					
	21.99	15.84	5.76	78.40					

Reaction
Coal → a CharH + b CH ₄ + c CO + d CO ₂ + e H ₂ + f H ₂ O
Coal \rightarrow g Tar + h CO ₂ + i H ₂ O
Tar \rightarrow j CharC + k CH ₄ + I H ₂ + m H ₂ O
CharH \rightarrow 2 CharC + $\frac{1}{2}$ H ₂
CharC + $H_2O \rightarrow CO + H_2$
CharC + $CO_2 \rightarrow 2 CO$
CharC + 2 $H_2 \rightarrow CH_4$
$CO + H_2O \leftrightarrow CO_2 + H_2$

а	25.8	е	10.8	
b	1	f	0.11	
С	8.2	g	4.7	
d	1.9	h	1.3	

Uvirginia Tech Invent the Future®

	700 °C			800 °C			
	Exp.	Sim.	% RE	Exp.	Sim.	% RE	Exp.
CO	0.190	0.118	38.2	0.209	0.118	43.8	0.318
CO ₂	0.286	0.252	11.8	0.265	0.252	5.0	0.128
H ₂	0.407	0.555	36.8	0.434	0.555	27.9	0.485
CH_4	0.118	0.076	36.1	0.092	0.078	17.6	0.068

	700 °C			800 °C			
	Exp.	Sim.	% RE	Exp.	Sim.	% RE	Exp.
CO	0.190	0.323	70.0	0.209	0.310	48.2	0.318
CO ₂	0.286	0.239	16.4	0.265	0.172	35.2	0.128
H ₂	0.407	0.329	18.8	0.434	0.417	3.9	0.485
CH ₄	0.118	0.108	8.6	0.092	0.102	10.5	0.068

ELAWARE