Development of control strategies for a 10MWe supercritical CO2 recompression **Brayton cycle**

Research & **Innovation Center**

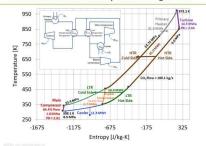
Eric Liese¹, Steven Zitney¹, Priyadarshi Mahapatra², Jacob Albright³ ¹US Department of Energy, National Energy Technology Laboratory; ²WVURC; ³ORISE

Sensors an Controls FWP Task 5.1 - Systems Engineering & Analysis Support

Development of Control Strategies for the Dynamic Operation 10MWe Supercritical CO₂

Objective

Develop operational and control strategies for the dynamic operation of a 10MWe supercritical CO₂ recompression Brayton cycle. Load following, startup, shutdown, plant trips


- · Cope with highly nonlinear fluid property changes, especially near the critical point
- Cope with high degree of heat recuperation and pressure interactions
 Maintain operation with CO₂ working fluid in supercritical region
- . Operate commercial cycles with coupled, constant-speed turbomachinery

Use Aspen Dynamics and Aspen Custom Modeler to develop dynamic system model. Other software (such as Matlab/Simulink) may be used for advanced control implementation.

• FWP M1 Milestone (M1.17.5.A)

Complete off-design studies of 10 MW system model that includes "inventory control" method. Basic P&ID system control implemented for slow load/heat input ramping. Document with an internal report or technical paper, (5/30/2017).

10 MW sCO₂ Recompression Brayton Cycle Simulation Results: Steady-state Design Point

- · Net power is 10 MWe. W_{NET} = W_T - W_{MC} - W_{BC}
- · Heat input is 21.3 MWt.
- · Cooler rejects 11.3 MWt.
- · Efficiency is 46.9%.
- · Low pressure ratio (PR) · Turbine PR = 2.64
- (23.75 MPa/ 9.0 Mpa) Cycle is highly recuperated
- $(Q_{HTR}+Q_{LTR})/Q_H = 2.8$
- $Q_{HTR}/Q_{LTR} = 3.1$ Bypass compressor flow is
- ~1/3 of total CO, flow.

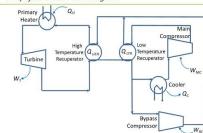
Background - U.S. DOE's Supercritical Transformational Electric Power (STEP) Program

- DOE sCO₂ Crosscutting Initiative (CCI) to demonstrate sCO₂ Brayton technologies at commercial scale
- DOE announced project award to develop sCO2 test facility (10/17/2016)
 - \$80M federal contribution, 20% industry cost share, and 6-year duration
 - · Managed by team led by GTI, SwRI, and GE Global Research
 - Design, build, and operate 10 MWe sCO2 Pilot Plant Test Facility in San Antonio, TX
 - Closed, indirect, sCO₂ recompression Brayton cycle
 - . Turbine inlet operating temperature of 973.15 K (700 °C)
 - · Demonstrate steady-state, dynamic, load-following, startup, and shutdown operations

• DOE-Industry workshop at Argonne National Laboratory (11/1-2/2016)

- · Explored status of interests and needs on technology applications
- · Discussed potential development of collaboration consortium for sCO2 RD&D work

Transient Study: Part-Load Operation Heat Input Turndown


- Goal: Maintain high cycle efficiency during turndown in heat input $(Q = MC_n \Delta T)$
- To transfer less heat (Q), the cycle ΔT or mass flow rate (M), must decrease
- When considering ΔT , recall that Carnot cycle efficiency ($\eta = 1 T_{low}/T_{high}$)

 - T_{bipb} = Turbine Inlet Temperature (TIT)
 - · Design point, 973.2 K (material constraint)
 - T_{low} = Main compressor inlet T (or Cooler Outlet T)
 - . Design point, 308.1 K (4 K above critical T to avoid two-phase dome)

• Thus to achieve highest efficiency, reduce cycle mass flowrate $(M = \rho A V)$

- · Speed Control: If cycle is not grid connected, turbomachinery speeds can be decreased
- · Decoupled turbomachinery offers more operational flexibility and speed control options
- Inventory Control (M_{inventor}=Σρ_iV_j): At fixed turbomachinery speeds, mass can be removed from the cycle As mass is removed, excle pressure decreases resulting in different changes in volumetric flow rate for each
 - turbomachine since each turbomachine operates at a different temperature and pressure
- . Thus, other control measures are required to maintain high efficiency operation while satisfying process constrain-

Closed Indirect sCO₂ Recompression Brayton Cycle Simplified Block Flow Diagram

Key Features

- · Closed cycle
- · Indirect heat
- · Two stages of
- recuperation
- · Cooler to reject unused heat
- Parallel compressors
- Decoupled turbomachinery

Heat Input Turndown - Decoupled Turbomachinery Temperature, Flow Split, and Inventory Control

· Maximize cycle efficiency (net power/heat input)

· Operating Constraints

TIT ≤ Upper bound [MV1, MV2, MV3,]

Design point, 973.2 K (material)

Main compressor inlet T for CO₂ ≥ Lower bound [MV2]

Design point, 308.1 K (4 K above critical T to avoid two-phase dome)

 LTR Cold Side Exit T = Bypass Compressor Exit T [MV3] Surge limit for bypass

Manipulated Variables (MV)

MV1: Storage valve (V6) | Inventory Control

MV2: Cooling water flow (V3) | Temperature Control

MV3: Bypass compressor speed (NBC) | Flow Split Control

Future Work 10MWe sCO₂ Recompression Brayton Cycle

· Dynamic Modeling

- Multistage compressor
- · Enhance turbine design and performance maps
- Compact heat exchangers

Control

- · Regulatory PID · Advanced process control, including model predictive control
- · Transient Operations

- · Load-following operation (while maintaining maximum efficiency) · Startup and shutdown

· Sensors

· Optimal sensor network design

· Disturbance rejection, state estimation, condition monitoring, fault diagnosis, .

Validation

- · Exploit data from STEP pilot plant test facility
- · Validate dynamic models, controls, and sensor network

