Institute for Shock Physics Applied Sciences Laboratory

WASHINGTON STATE

World Class. Face to Face.

Raman Spectroscopy for the On-Line Analysis of Oxidation States of Oxygen Carrier Particles

Victoria Leichner, John Kirtley, and Hergen Eilers

Introduction

- Need for cleaner energy systems is driving the current development of chemical looping combustion (CLC) systems.
- CLC systems use oxygen carrier particles (OCPs).

https://www.youtube.com/watch?v=1r1VrtKB-

AM, accessed 9/20/16

"DOE/NETL Advanced Combustion Systems: Chemical Looping Summary," July 2013, DOE/NETL

Research Challenges

- Process optimization requires knowledge of OCP oxidation state at different stages of CLC process.
- Ability to make on-line measurements of oxidation states of OCPs is lacking and new sensors need to be developed.
- OCPs are at extreme conditions, including temperatures as high as 1000 °C and pressures of 10 atm.

Objectives

- Set up a pulsed time-gated Raman spectroscopy system in combination with a pressurized high-temperature sample chamber.
- Optimize Raman spectroscopy system and measure high-temperature Raman spectra of OCPs.
- Develop an analysis procedure to interpret the Raman spectra.

Envisioned Sensor System

Raman Spectroscopy System

Front-view Looking into window
Preliminary Testing

RT, 10X objective, 532 nm, Stokes 2000 25000 .45 mJ, single pulse 1800 1600 20000 1400 1200 15000 <u>ഴ</u>1000 Count 800 10000 600 400 5000 200 mW, 180 s 200 150 200 250 300 350 400 450 500 550 600 650 Raman Shift (cm⁻¹) RT, 10X objective, 532 nm, Anti-Stokes 2000-1800-25000 2.45 mJ, single pulse 1600 20000 1400 1200 15000 **\$**1000 Count 10000 800 200 mW, 180 s 600 5000 400

Fe₂O₃ Spectra

-650-600-550-500-450-400-350-300-250-200-150 Raman Shift (cm⁻¹)

n

NATIONAL

Next Steps

- Evaluate and integrate best approach for collecting single-shot Raman spectra.
- Heat known materials (e.g. Fe₂O₃, Fe₃O₄) to high temperatures (e.g. 800°C, 900°C, 1000°C) and measure Raman spectra.
- Perform inverse calibration to determine composition and temperature.
- Conduct blind tests to demonstrate and evaluate the performance of our approach for identifying the oxidation state of OCPs at high temperature.

SUCCESS CRITERIA AT DECISION POINTS

• End of month 12:	Experimental Raman spectroscopy system for high-temperature measurements operational.
• End of month 21:	Automated analysis process operational.
• End of month 24:	Demonstrated high-temperature Raman spectroscopy system on a minimum of three blind samples.

U.S. DEPARTMENT OF

Acknowledgements: This work was supported by the Department of Energy, National Technology Research Laboratory, Award # DE-FE0027840 to Washington State University.