Combustion Synthesis of Boride-Based Electrode Materials for MHD Direct Power Extraction

The University of Texas at El Paso PI: Evgeny Shafirovich, 500 W. University Ave., El Paso, TX 79968, eshafirovich2@utep.edu Presenter: Sergio Cordova (graduate student)

2017 Project Review Meeting for Crosscutting Research, Gasification Systems, and Rare Earth Elements Research Portfolios

March 23, 2017

DOE Award Number: DE-FE-0026333

Period of Performance: 10/1/2015 – 9/30/2018

Project Goals and Objectives

- Goal: To develop an advanced, low-cost manufacturing technique for fabrication of boride-based ultrahigh-temperature ceramics (UHTCs) that possess all the required properties to function as sustainable electrodes in MHD direct power extraction applications.
- Specifically, the project investigates use of mechanical activation-assisted selfpropagating high-temperature synthesis (MASHS) followed by pressureless sintering for the fabrication of UHTCs based on ZrB₂ and HfB₂ from inexpensive raw materials ZrO₂, HfO₂, and B₂O₃, with Mg as a reactant.
 - Determine optimal conditions of mechanical activation, SHS, and pressureless sintering for fabrication of doped ZrB₂ and HfB₂ for DPE applications.
 - Determine thermophysical, electrical, mechanical, and oxidation properties of borides obtained by MASHS followed by pressureless sintering.

Outline

- Background
- Methods
- Results
- Summary
- Future Work

MHD Generator

Magnetohydrodynamic Power Generation (Principle)

- Magnetohydrodynamic (MHD) generator is thermodynamically advantageous over gas turbines.
 - No moving parts → the maximum working temperature is higher.
- Use of an open-cycle MHD generator as the topping cycle in combination with Rankine cycle has the potential to increase the efficiency of fossil-fuel burning power plants.

Requirements to MHD Electrodes

- To withstand temperatures up to 800 K in the case of a slagging generator and from 1800 K to 2400 K in the case of a clean generator.
- To possess sufficient electrical conductivity and provide smooth transfer of electric current to and from the plasma.
- To have an adequate thermal conductivity and be thermally stable at operating conditions.
- To withstand a thermal shock.
- To be resistive to erosion from high-velocity gases and to electrochemical attack resulting from interactions with slag and/or seed (e.g., potassium) in an electromagnetic field.

The development of such materials and of low-cost techniques for their fabrication is a great challenge.

Borides of Zirconium and Hafnium

- Borides of zirconium and hafnium (ZrB₂ and HfB₂) belong to the class of Ultra-High-Temperature Ceramics (UHTCs)
 - Extremely high melting temperatures (about 3250 °C)
 - High hardness
 - High electrical and thermal conductivities
 - Chemical stability
 - Good thermal shock and oxidation resistance
 - Resistance to molten metals and slags
 - Resistance to plasma sparks and arcs
 - With dopants (e.g., SiC), high resistance to ablation in oxidizing environments

Fabrication of ZrB₂ and HfB₂

- The available methods for fabrication of doped ZrB₂ and HfB₂ are complex, energy-consuming, and expensive.
- The project will investigate the feasibility of fabricating doped ZrB₂ and HfB₂, using an advanced, low-cost manufacturing technique based on combustion synthesis and pressureless sintering.

Self-propagating High-temperature Synthesis (SHS)

Schematic of SHS process

• Advantages of SHS:

- Short processing time
- Low energy consumption
- Simple equipment
- Tailored microstructure and properties
- High purity of the products

Image: www.ism.ac.ru/handbook/shsf.htm

SHS of ZrB₂ and HfB₂: Pathways

• SHS from elements

 $Zr + B \rightarrow ZrB_2$; $\Delta H^o_{rxn} = -323 \text{ kJ}$ $Hf + B \rightarrow HfB_2$; $\Delta H^o_{rxn} = -328 \text{ kJ}$ - Zr, Hf, and B are very expensive!

Magnesiothermic SHS from oxides

 $ZrO_2 + B_2O_3 + 5Mg \rightarrow ZrB_2 + 5MgO;$ $ZrO_2 + 2H_3BO_3 + 5Mg \rightarrow ZrB_2 + 5MgO + 3H_2O;$

- MgO is separated by mild acid (HCl) leaching.
- ZrO_2 , HfO_2 , B_2O_3 , and H_3BO_3 are cheap.
- Mg is much less expensive than Zr and Hf.

9

 $\Delta H^{o}_{rxn} = -959 \text{ kJ}$

 $\Delta H^{o}_{rxn} = -769 \text{ kJ}$

Mechanical Activation

- Ignition of $ZrO_2-B_2O_3-Mg$ and $HfO_2-B_2O_3-Mg$ mixtures is more difficult than that of Zr/B and Hf/B mixtures because of lower exothermicities.
- To improve ignition, mechanical activation (short-time, high-energy ball milling) of mixtures before SHS is used.
- Inert powders such as NaCl are used sometimes to facilitate ball milling.
 - Inert diluents also decrease the combustion temperature, the reaction propagation velocity, and the product particle size, thus leading to a finer product with improved sinterability.

Sintering of SHS-produced ZrB₂ and HfB₂

- SHS products can be densified by:
 - Hot pressing (HP)
 - Spark plasma sintering (SPS)
 - Pressureless sintering (PS)
- Because of high heating rates, SHS products have high defect concentrations in the lattice, which enhances the sinterability.
- Pressureless sintering (PS) offers several advantages over HP and SPS.
 - Inexpensive equipment (furnaces) that can be scaled up readily
 - Near-net-shape processing of ceramic parts with complex geometries

Pressureless Sintering

• Dopants

- Carbon containing additives (C, B₄C, WC, and VC)
- Transition metals (Fe, Cr, and Ni)
- Refractory metal silicides (MoSi₂, TiSi₂, and HfSi₂)

Nanoscale powders

- Nanoscale powders produced by SHS are especially promising because they also have high defect concentrations.
- To decrease the particle size, NaCl is used as an inert diluent.
- NaCl is removed from the products by dissolution in water.
- Nanoscale ZrB₂ powder produced with adding NaCl showed excellent sinterability

Mechanical Activation

- Activated ZrO₂/B₂O₃/Mg and HfO₂/B₂O₃/Mg mixtures are prepared with NaCl or MgO as inert diluents.
- ZrO_2/B_2O_3 and HfO_2/B_2O_3 mole ratios are 1:1.
- $Mg/B_2O_3/ZrO_2$ mole ratio is varied to find the optimal Mg concentration.
- The amount of inert diluent (NaCl or MgO) is also varied.

Combustion Synthesis

- Combustion characteristics (the maximum temperature and the front propagation velocity) are determined.
 - Ar environment
 - The pellet is ignited at the top.
 - High-speed video recording
 - Thermocouples

Hot-wire ignition facility

Acid Leaching

- To remove MgO and NaCl, the SHS products are leached in diluted hydrochloric acid (10% HCl).
- The dissolution process is carried out in a Erlenmeyer flask with a mechanical stirrer at atmospheric pressure and room temperature for 2 hours.
- ZrB₂ is separated using a paper filter.
- The products are washed in water and dried for 24 hours.

Sintering

Mixing with dopants

3-D inversion kinematics mixer (Inversina 2L)

Pressing

Sintering

2000°C Temperature-Controlled 30KW Induction Heating System (MTI Corp., EQ-SP-50KTC)

Thermodynamic Analysis

- Complete conversion of oxides to ZrB₂ (or HfB₂) is achieved at 40 % excess Mg.
- High concentration of Mg vapor and hence undesired pressure increase.
- Temperatures lower than 2370 K are needed to achieve full conversion.

Thermodynamic Analysis with Inert Diluents

- Complete conversion of oxides to ZrB₂ (or HfB₂) is achieved at 44 wt% NaCl or 25 wt% MgO.
 - No gaseous products

Effect of Inert Diluents on Milling

Mixture lost during milling vs. inert diluent concentration

- High-energy ball milling of Mg/ZrO₂/B₂O₃ mixtures is accompanied by a significant loss of materials due to sticking to the grinding media.
- Adding MgO does not prevent loss of material.
- 5-10 wt% NaCl effectively decreases the mixture loss.

Combustion of $ZrO_2/B_2O_3/Mg$ Mixture

- Pellet dimensions
 - Diameter: 13 mm
 - Height: 18 mm

- Measured max. temperature: 1725 °C
- Adiabatic flame temperature: 2097 °C

XRD

- There are no reactions during milling.
- Mg reduces most of ZrO₂.
- MgO stabilizes the cubic phase of ZrO₂.
- The undesired compound Mg₃(BO₃)₂ is present in the combustion products and after leaching.
- Leaching removes NaCl and MgO.

Effect of NaCl on Combustion

$ZrO_2/B_2O_3/5Mg + NaCl$

0 wt%

10 wt%

40 wt%

50 wt%

temperatures vs. NaCl concentration

Effect of NaCl on Combustion Products

Peak Intensity Ratio=
$$\frac{I_{c-ZrO_2(111)}}{I_{ZrB_2(101)}}$$

- ZrO₂ is partially stabilized by MgO in mixtures with NaCl.
- The amount of cubic ZrO₂ that is stabilized by MgO decreases at lower temperatures.
- Leaching removes Mg₃(BO₃)₂

Effect of NaCl on Microstructure

SEM Image of ZrB_2 obtained from a mixture without NaCl

SEM Image of ZrB_2 obtained from a mixture with 30 wt% NaCl

• NaCl decreases the particle size of ZrB₂.

- The mass loss in the unmilled and milled mixtures is caused by Mg and NaCl, respectively.
- Milling decreases the ignition temperature of the reaction and prevents Mg loss.
- Melting of B₂O₃ and melting of Mg play important roles.

XRD of Samples Quenched during DSC

- The reaction between B₂O₃ and Mg is initiated by melting of B₂O₃ and is intensified by melting of Mg.
- The reaction between ZrO₂ and Mg needs temperatures greater than 750 °C.
- The content of NaCl decreases due to vaporization after melting (801 °C).

Effect of MgO on Combustion Products

- Adding MgO to the mixture partially stabilizes ZrO₂.
- Unfortunately, MgO decreases the conversion of ZrO₂ to ZrB₂.

Effect of Excess Mg on Combustion Products

 20% excess Mg was added to the mixture to compensate for Mg loss during combustion.

 Excess Mg increases the conversion of oxides to borides.

Peak intensity ratios vs. NaCl concentration

Microstructure of ZrB₂

SEM Image of ZrB_2 obtained from a mixture with 30 wt% NaCl and 20% excess Mg

- Nanoscale Particles
 - Lower sintering temperature
 - Finer grain size
- Polycrystalline particles
 - Sinter better than single-crystal particles

Summary

- ☺ Adding NaCl to ZrO₂/B₂O₃/Mg effectively decreases the loss of materials during milling.
- \bigcirc Mechanical activation has enabled magnesiothermic SHS of ZrB₂.
 - The products also contain undesired phases ZrO_2 and $Mg_3(BO_3)_2$.
- © Excess Mg increases the conversion of oxides to borides.
- \bigotimes MgO has an adverse effect on conversion of ZrO_2 to ZrB_2 .
- \bigcirc Increasing NaCl content decreases the particle size of ZrB_2 .
 - The obtained particles are polycrystalline and nanoscale, which may enhance sintering.

Future Work

- Optimization of the mixtures for fabricating HfB₂
- Further investigation of the product microstructure
- Use of EDS and quantitative XRD methods for measurements of oxygen content in the powders
- Sintering of the obtained powder, with and without dopants
- Measurements of electrical, mechanical, oxidation and thermophysical properties

Acknowledgments

- DOE NETL Program for Crosscutting Research
- Program Manager: Jason Hissam
- Graduate Student: Sergio Cordova
- Undergraduate Students: Leonardo Gutierrez Sierra

Thanks!

