Concentrated Solid Solution Alloys: Computational Modeling and Experimental Validation

Michael C. Gao1,2, Paul D. Jablonski1, Jeffrey A. Hawk1

1National Energy Technology Lab; 2AECOM

NETL 2017 Project Review Meeting

March 23, 2017
Acknowledgments

• This project is conducted in support of DOE-FE-NETL Crosscutting Technology Research, Advanced Turbines, and Advanced Combustion Programs, and is executed through NETL Research and Innovation Center’s Advanced Alloy Development Field Work Proposal. Research performed by AECOM Staff was conducted under the RES contract DE-FE-0004000.

• NETL: Kyle Rozman, John Sears, Margaret Ziomek-Moroz, Ömer N. Doğan, Casey Carney, Gordon Holcomb, Alvaro Rodriguez, Joe Tylczak, Dan Sorescu, Youhai Wen, Dave Maurice, Chris Powell, Ed Argetsinger, Joe Mendenhall...

• Collaborators: Mike Widom (CMU), Peter K. Liaw (UT), Yong Zhang (USTB), Shengmin Guo (LSU), Junwei Qiao (TIT), Chuan Zhang (CompuTherm), Chao Jiang (INL), Karin A. Dahmen (UIUC)

Disclaimer: This project was funded by the Department of Energy, National Energy Technology Laboratory, an agency of the United States Government, through a support contract with AECOM. Neither the United States Government nor any agency thereof, nor any of their employees, nor AECOM, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
NETL R&IC Advanced Alloy Development

Heat Resistant Alloy Development

Importance

Perfect design methodology and manufacturing practice to shorten the time needed to develop advanced heat resistance alloys for transformational FE energy systems.

Scope

Increase the operational temperature of martensitic steels, austenitic stainless steels, and nickel superalloys for transformational FE energy systems.

Expected Accomplishments

FY2017: Second γ’ strengthened nickel superalloy (IN740H) for use as thick wall cast components in AUSC power cycles.

Beyond: Assessment of the potential for new alloy candidate classes (e.g., HEA’s, γ’ strengthened Co superalloys, high yield stress SS, etc.) & process technologies (i.e., FSW, high shear materials processing, etc.) to significantly impact performance in transformational energy cycles.
HEA Definitions

Two definitions by Professor Jien-Wei Yeh:

• One is based on composition. HEAs are preferentially defined as alloys containing at least five principal elements, each with an atomic percentage between 5% and 35%.
• The other is based on configurational entropy. HEAs are defined as alloys having configurational entropies at a random state larger than 1.5R, regardless if they are single phase or multi-phase at room temperature.

Other names that are used:

• Equiatomic multicomponent alloys
• Multi-principal-component alloys
• Compositionally complex alloys
• Solid-solution alloys
• Concentrated solid solution alloys

Total, Mixing, and Excess Entropies

Total properties

\[G = \sum_{i=1}^{N} x_i G_i + \Delta G_{\text{mix}} \]

\[H = \sum_{i=1}^{N} x_i H_i + \Delta H_{\text{mix}} \]

\[S = \sum_{i=1}^{N} x_i S_i + \Delta S_{\text{mix}} \]

Mixing properties

\[\Delta G_{\text{mix}} = \Delta H_{\text{mix}} - T \Delta S_{\text{mix}} \]

\[\Delta S_{\text{mix}}^{\text{conf}} \bigg|_{\text{ideal}} = -R \sum_{i=1}^{N} x_i \ln x_i \]

\[\Delta S_{\text{mix}}^{\text{conf}} \bigg|_{\text{max}} = R \ln N \]

Excess entropy:

\((\text{CALPHAD}) \)

\[\Delta S_{\text{mix}} = \Delta S_{\text{mix}}^{\text{conf}} + \Delta S_{\text{mix}}^{\text{el}} + \Delta S_{\text{mix}}^{\text{ph}} + \Delta S_{\text{mix}}^{\text{mag}} \]

Excess entropy:

\[S^\varphi = \text{total } S^\varphi - \text{conf } S^\varphi = \text{total } S^\varphi + R \sum_{i=1}^{N} x_i \ln x_i \]
Proposed Four Core Effects

- high entropy effect for thermodynamics
- sluggish diffusion effect for kinetics
- severe lattice distortion effect for structure
- cocktail effect for properties

\[G = H - TS \]

Materials Properties

Many existing conventional heat resistant alloys are vulnerable to environmental degradation at high temperatures, which causes significant oxidation, loss of strength, and undesirable phase transformation & coarsening, leading to accelerated creep and shorter creep life.

Many existing Al-, Mg- and Ti-base alloys are lightweight but lack sustained high strength at fossil energy temperatures. Lost strength at intermediate temperatures also limits their usefulness in a variety of applications.

Higher strength alloys are more expensive and heavier, making them less desirable for transportation/defense industries, e.g., Ni-alloys. Oxidation needs to be improved for both steels and Ni-alloys.

Current refractory metal alloys (mostly Nb- and Mo-based) are heavy and lack adequate oxidation resistance.
General DOE-FE Material Objectives

Enhanced strength at room temperature AND high temperatures.
Enhanced chemical stability against oxidation and other forms of corrosion in harsh environment.
Low atomic diffusion to slow down microstructure coarsening and degradation.
Enhanced thermal stability at high temperatures.
Economically competitive against existing materials.
Reduced weight (lower density).
NETL HEA Research Objectives

Provide fundamental understanding of HEA formation and intrinsic thermodynamic, electronic and magnetic properties.

Design and develop high-performance HEAs that are superior to commercial Ni-base superalloys, or use HEA concepts to improve upon existing nickel superalloys.

Design and develop high-performance HEAs that are superior to stainless steels.

Design and develop high-performance light-weight HEAs that are superior to commercial Ti alloys.

Design and develop high-performance refractory BCC HEAs.

Design and develop tough corrosion-resistant oxidation-resistant coatings based on HE concepts.

Explore high-entropy compounds.
Computational Details

• Model disordered atomic structure of HEAs
 – Hybrid Monte Carlo / Molecular Dynamics (MC/MD): Total simulation time is up to 100 ps.
 • NVT (constant number of substance, volume, and temperature)
 • NPT (constant number of substance, pressure, and temperature)
 • MC: swapping atomic positions to reach equilibrium
 – Special Quasi-random Structure (SQS): use ATAT developed by van de Walle and collaborators.

• Ab initio molecular dynamics simulations
 – Liquid structure and diffusion

• Density functional theory (DFT) calculations
 – Structural, elastic, electronic, magnetic and vibrational properties.

• CALPHAD modeling
 – ThermoCalc software with TCNi7 and TTNi8 thermodynamic databases
 – CompuTherm Pandat software with PanHEA database
 – Reliability of the database

Reported Single-phase HEA Compositions

FCC

<table>
<thead>
<tr>
<th>Composition</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoCrFeNi</td>
<td>1</td>
</tr>
<tr>
<td>CoFeMnNi</td>
<td>2,3</td>
</tr>
<tr>
<td>CoCrMnNi</td>
<td>3</td>
</tr>
<tr>
<td>CoFeNiPd</td>
<td>4</td>
</tr>
<tr>
<td>CoCrFeMnNi</td>
<td>5</td>
</tr>
<tr>
<td>CoCrFeNiPd</td>
<td>6</td>
</tr>
<tr>
<td>Al_{20}Li_{20}Mg_{10}Sc_{20}Ti_{30}</td>
<td>7</td>
</tr>
</tbody>
</table>

BCC

<table>
<thead>
<tr>
<th>Composition</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlNbTiV</td>
<td>8</td>
</tr>
<tr>
<td>HfNbTiZr</td>
<td>9</td>
</tr>
<tr>
<td>MoNbTaW</td>
<td>10,11</td>
</tr>
<tr>
<td>NbTaTiV</td>
<td>12</td>
</tr>
<tr>
<td>NbTiVZr</td>
<td>13</td>
</tr>
<tr>
<td>AlCrMoTiW</td>
<td>14</td>
</tr>
<tr>
<td>AlNbTaTiV</td>
<td>12</td>
</tr>
<tr>
<td>HfNbTaTiZr</td>
<td>15</td>
</tr>
<tr>
<td>HfNbTiVZr</td>
<td>16</td>
</tr>
<tr>
<td>MoNbTaVV</td>
<td>10,11</td>
</tr>
<tr>
<td>MoNbTaTiV</td>
<td>17</td>
</tr>
<tr>
<td>MoNbTiVZr</td>
<td>18</td>
</tr>
<tr>
<td>NbReTaTiV</td>
<td>17</td>
</tr>
<tr>
<td>MoNbReTaW</td>
<td>17</td>
</tr>
<tr>
<td>CrMoNbTaVV</td>
<td>19</td>
</tr>
<tr>
<td>HfNbTaTiVZr</td>
<td>20</td>
</tr>
<tr>
<td>MoNbTaTiVV</td>
<td>21</td>
</tr>
<tr>
<td>MoNbReTaVV</td>
<td>17</td>
</tr>
<tr>
<td>MoNbReTaTiVV</td>
<td>17</td>
</tr>
</tbody>
</table>

HCP

<table>
<thead>
<tr>
<th>Composition</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoFeReRu</td>
<td>22</td>
</tr>
<tr>
<td>MoPdRhRu</td>
<td>23</td>
</tr>
<tr>
<td>DyGdHoTbY</td>
<td>24</td>
</tr>
<tr>
<td>DyGdLuTbTm</td>
<td>24</td>
</tr>
<tr>
<td>DyGdLuTbY</td>
<td>25</td>
</tr>
<tr>
<td>Al_{20}Li_{20}Mg_{10}Sc_{20}Ti_{30}</td>
<td>7</td>
</tr>
</tbody>
</table>

References

18. Y. Zhang et al. JOM 64, 830 (2012).
Disordered HEA Formation Rules

Literature review
Empirical Rules for Disordered HEA Formation

\[
\Delta H_{\text{mix}} = 4 \sum_{i=1, i \neq j}^{N} \Delta H_{ij}^{\text{mix}} c_i c_j \\
\Omega = \frac{T_m \Delta S_{\text{mix}}}{|\Delta H_{\text{mix}}|} \\
\kappa_i^\text{sp} (T) = 1 + \frac{T \Delta S_{\text{mix}}}{|\Delta H_{\text{mix}}|} (1 - \kappa_2) > \Delta H_{IM} / \Delta H_{\text{mix}} \\
\Delta \chi = \sqrt{\sum_i^N c_i (\chi_i - \sum_j^N c_j \chi_j)} \\
\phi = \frac{-R \sum_i^N c_i \ln c_i - \sum_{i \neq j}^N \ln 4 H_j c_j}{|S_E|} \\
\delta = \sqrt{\sum_i^N c_i \left(1 - c_i / \sum_j^N c_j r_j \right)^2} < \epsilon^2 > 1/2 \\
E_2 / E_0 = \sum_{j \neq i}^N c_i c_j \left| r_i + r_j - 2 r \right|^2 / 4(r^2) \\
V_{\text{EC}} = \sum_i^N c_i V_{\text{EC}_i}
\]

(a) 10
\[\Delta H_{\text{mix}} \text{ [kJ/mol]} \]
\[\delta \text{ [%]} \]
(b) 1
\[\Omega \text{ parameter} \]
\[\Delta \chi \]

- FCC
- BCC
- HCP
- multi-phase
- amorphous

Empirical Rules for Disordered HEA Formation

Choose Chemically Similar Elements

<table>
<thead>
<tr>
<th>H</th>
<th>Li bcc</th>
<th>Be bcc</th>
<th>B</th>
<th>C</th>
<th>N</th>
<th>O</th>
<th>F</th>
<th>Ne</th>
</tr>
</thead>
<tbody>
<tr>
<td>453.69</td>
<td>1560</td>
<td></td>
<td>370.87</td>
<td>923</td>
<td>Mg hcp</td>
<td>933.47</td>
<td>Al fcc</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>336.53</td>
<td>1115 Ca fcc</td>
<td>1814 Ti hcp</td>
<td>1941 V bcc</td>
<td>2183 Cr bcc</td>
<td>2180 Mn fcc</td>
<td>1519 Fe fcc</td>
<td>1811 Co fcc</td>
<td>1768 Ni fcc</td>
</tr>
<tr>
<td>K bcc</td>
<td>1050 Sr fcc</td>
<td>1799 Y hcp</td>
<td>2128 Zr bcc</td>
<td>2750 Nb fcc</td>
<td>2896 Mo bcc</td>
<td>2430 Te bcc</td>
<td>2607 Ru hcp</td>
<td>2237 Rh fcc</td>
</tr>
<tr>
<td>312.46</td>
<td>1000 Ba bcc</td>
<td>2506 Hf hcp</td>
<td>3290 Ta bcc</td>
<td>3695 W bcc</td>
<td>3459 Re fcc</td>
<td>3306 Os hcp</td>
<td>2719 Ir fcc</td>
<td>2041.4 Pt fcc</td>
</tr>
<tr>
<td>301.59</td>
<td>1193 La dhcp</td>
<td>1068 Ce fcc</td>
<td>1208 Pr dhcp</td>
<td>1297 Nd dhcp</td>
<td>1315 Pm dhcp</td>
<td>1345 Sm bcc</td>
<td>1099 Eu fcc</td>
<td>1585 Gd hcp</td>
</tr>
<tr>
<td>Fr 973 Ra bcc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si</td>
<td>P</td>
<td>S</td>
<td>Cl</td>
<td>Ar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Number on top is the melting point in Kelvin

http://www.theochem.kth.se/people/murugan/course/periodic_table_crystal_structure.pdf
Search Strategies

- Inspection from existing binary/ternary phase diagrams
 - Look for isomorphous or large solubility
- Prediction from CALPHAD modeling
 - The key is the database
- Phase stability from density functional theory (DFT)
- Ab initio molecular dynamics (AIMD) simulations
 - Avoid potent short-range order in the liquid
- Experimental validations: casting and characterization

Searching results

1. Dy-Er-Gd-Ho-Lu-Sc-Sm-Tb-Tm-Y
2. Mo-Nb-Ta-Ti-V-W
3. Co-Os-Re-Ru
4. Ba-Ca-Eu-Sr-Yb
5. Co-Cr-Fe-Mn-Ni
6. Mo-Nb-Re-Ta-Ti-V-W
CALPHAD Modeling vs. Experiments

Equilibrium Mole Fractions vs. Temperature

Only FCC was observed in CoCrFeMnNi while composite forms in other 5 alloys. CALPHAD reasonably reproduced their observation.
CALPHAD: Entropy vs Enthalpy

CALPHAD vs Miedema Model

1. Entropy of mixing is fairly close for BCC and liquid phases using CALPHAD and Miedema model.
2. Enthalpy of mixing shows significant discrepancy in terms of the sign and value between CALPHAD and Miedema model.
Calculated PDF in single-phase HEAs (CoCrFeMnNi and HfNbTaTiZr), multi-phase alloy (Al$_{1.25}$CoCrCuFeNi), and amorphous alloy (CuNiPdPtP).
Liquid Structure and Diffusion

Al1.3CoCrCuFeNi at 1400°C

B2 phase
\(\text{Al}_{1.3n} \text{NiFe}_{1-x} \text{Co}_{1-y} \)

Cu-rich FCC precipitate

Enthalpy of Formation: DFT

Vibrational Entropies: DFT

Vibrational density of states

\[S_{ph}(V, T) = 3k_B \int_0^\infty n_{ph} \left[(f_{BE} + 1) \ln(f_{BE} + 1) - f_{BE} \ln f_{BE} \right] d\epsilon \]

\[f_{vib}(T) = k_B T \int g(\omega) \ln \left[2 \sinh \left(\frac{\hbar \omega}{2k_B T} \right) \right] d\omega \]

\[S_{el}(V, T) = -2k_B \int_{-\infty}^\infty n_{el}(\epsilon, V) \left[f_{FD} \ln f_{FD} + (1 - f_{FD}) \ln(1 - f_{FD}) \right] d\epsilon \]

\(f_{BE} \): Bose-Einstein distribution function

\(f_{FD} \): Fermi-Dirac distribution functions

\(n_{ph} \): phonon density of states

\(n_{el} \): electron density of states

\(\omega \): vibrational frequency

\(k_B \): Boltzmann constant

\(\hbar \): reduced Planck constant

\(T \): absolute temperature

Configurational Entropy

Electronic Entropy

Total Entropy Properties

Positive excess entropy in FCC phase is predicted in Co-Cr-Fe-Mn-Ni system.
Negative excess entropy in BCC phase is predicted in Mo-Nb-Ta-Ti-V-W system.
Maximum entropy of mixing may deviate from equimolar compositions.
Manufacturing Large-Scale HEAs

Mechanical & Physical Behavior

Initially, eight (8) heats of materials based on High Entropy Alloy (HEA) concept were produced.

- HEA materials have low yield strength (YS) but work harden substantially.
- HEA material behavior similar to 300 series stainless steels.
- Uniform elongation at elevated temperatures suggest SP behavior potential for selected HEA materials.

Nominal Compositions of HEA Materials

<table>
<thead>
<tr>
<th>ID Name</th>
<th>Co</th>
<th>Cr</th>
<th>Fe</th>
<th>Mn</th>
<th>Ni</th>
<th>Nb</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEA1</td>
<td>26.0</td>
<td>22.7</td>
<td>24.9</td>
<td>---</td>
<td>25.9</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>HEA2</td>
<td>21.7</td>
<td>19.1</td>
<td>17.4</td>
<td>20.3</td>
<td>21.5</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>HEA3B</td>
<td>21.5</td>
<td>19.2</td>
<td>17.2</td>
<td>19.9</td>
<td>22.2</td>
<td>0.11</td>
<td>0.02</td>
</tr>
<tr>
<td>HEA4</td>
<td>17.6</td>
<td>17.2</td>
<td>31.0</td>
<td>16.3</td>
<td>17.9</td>
<td>0.09</td>
<td>0.02</td>
</tr>
<tr>
<td>HEA5B</td>
<td>17.0</td>
<td>20.9</td>
<td>29.3</td>
<td>15.2</td>
<td>17.6</td>
<td>0.09</td>
<td>0.02</td>
</tr>
<tr>
<td>HEA6B</td>
<td>14.9</td>
<td>16.1</td>
<td>39.8</td>
<td>13.6</td>
<td>15.4</td>
<td>0.17</td>
<td>0.03</td>
</tr>
<tr>
<td>HEA7B</td>
<td>12.5</td>
<td>15.8</td>
<td>46.9</td>
<td>11.7</td>
<td>12.9</td>
<td>0.16</td>
<td>0.03</td>
</tr>
<tr>
<td>HEA8B</td>
<td>26.8</td>
<td>---</td>
<td>22.6</td>
<td>24.5</td>
<td>26.1</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
Homogenization + Thermo-Mechanical Processing

2016 R&D 100 Awards
“Computationally Optimized Heat Treatment of Metal Alloys”
NETL / P.D Jablonski and J.A. Hawk

- Use computational thermodynamics and kinetics to design and optimize homogenization treatments.
- Homogenized HEAs to +/- 5%, or better, (i.e., largest allowable variation would be 95-105% of nominal).

- Thermo-Mechanical processing accomplishes two things
 - Breaks up and refines the cast structure
 - Changes the size/shape of the material for further testing

- Hot working temperatures chosen so that:
 - Materials soften adequately without grain boundary failure.
 - In-process recrystallization is promoted.
 - Oxidation is minimized.

2016 R&D 100 Awards
“Computationally Optimized Heat Treatment of Metal Alloys”
NETL / P.D Jablonski and J.A. Hawk

- Use computational thermodynamics and kinetics to design and optimize homogenization treatments.
- Homogenized HEAs to +/- 5%, or better, (i.e., largest allowable variation would be 95-105% of nominal).

- Thermo-Mechanical processing accomplishes two things
 - Breaks up and refines the cast structure
 - Changes the size/shape of the material for further testing

- Hot working temperatures chosen so that:
 - Materials soften adequately without grain boundary failure.
 - In-process recrystallization is promoted.
 - Oxidation is minimized.

2016 R&D 100 Awards
“Computationally Optimized Heat Treatment of Metal Alloys”
NETL / P.D Jablonski and J.A. Hawk

- Use computational thermodynamics and kinetics to design and optimize homogenization treatments.
- Homogenized HEAs to +/- 5%, or better, (i.e., largest allowable variation would be 95-105% of nominal).

- Thermo-Mechanical processing accomplishes two things
 - Breaks up and refines the cast structure
 - Changes the size/shape of the material for further testing

- Hot working temperatures chosen so that:
 - Materials soften adequately without grain boundary failure.
 - In-process recrystallization is promoted.
 - Oxidation is minimized.
HEA Tensile Mechanical Behavior

HEA1&2 materials exhibit many of the same characteristics as do stainless steel.
HEA-1, CoCrFeNi
Tensile Tested at RT

A lot of fine twinning is present in this sample – the twinning width/spacing often being in the 50-100 nm range.

Presence of high-density micro-voids on the fracture surface, suggesting excellent ductility. MnS particles are also identified.
Plot of Stress vs. LMP for HEA3B
20 ksi from 1067°F (575°C) to 1202°F (650°C)

\[
\text{LMP} = \left(\frac{T}{1000} \right) \times [20 + \log t]
\]

Stress = \((275.7491) - (7.0138) \text{ LMP}\)

- At a constant stress, the LMP value should be roughly the same no matter what the temperature of the test.
- For HEA3B the LMP value decreases from a high at the shortest creep life to a low at the longest creep life.
- This suggests continuous evolution of the microstructure during the test.

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>LMP</th>
<th>Time to Failure (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>650</td>
<td>36.8249</td>
<td>145</td>
</tr>
<tr>
<td>637.5</td>
<td>36.7281</td>
<td>255</td>
</tr>
<tr>
<td>625</td>
<td>36.6518</td>
<td>469</td>
</tr>
<tr>
<td>612.5</td>
<td>36.5302</td>
<td>822</td>
</tr>
<tr>
<td>600</td>
<td>36.4709</td>
<td>1,604</td>
</tr>
<tr>
<td>600</td>
<td>36.4502</td>
<td>1,556</td>
</tr>
<tr>
<td>587.5</td>
<td>36.3608</td>
<td>2,959</td>
</tr>
<tr>
<td>575</td>
<td>36.3450</td>
<td>6,408</td>
</tr>
</tbody>
</table>
Summary of Research

• Formation of single-phase HEAs

• Entropy calculations using DFT/ MC/MD methods and CALPHAD
 – Positive vibrational entropy of mixing for FCC CoCrFeNi agrees with positive excess entropy calculated from CALPHAD. Negative vibrational entropy of mixing for BCC MoNbTaW agrees with negative excess entropy calculated from CALPHAD.
 – The true configurational entropy is close to ideal at high temperatures, but decreases with lowering temperatures. Presence of short range order lowers the configurational entropy.
 – Maximum entropy of mixing may deviate from equimolar compositions.

• DFT calculations predict:
 – Elastic properties of rare-earth HCP HEAs and BCC MoNbTaTiV HEA obey the rule of mixture for rare earth HCP HEAs.
Summary of Research

• Solid solution strengthening modeling
 – Consider differences in atomic size and shear modulus among constituents
 – Calculated yield strength agrees well with experiments for single-phase BCC HEAs

• Manufacturing large-scale ingots and Mechanical Properties
 – Research on new alloys, especially HEA’s, requires particular attention to detail in how to design & prepare materials.
 – From alloy design research, melt stock, melting methodology, and subsequent thermo-mechanical processing / heat treatment, is very important and must be carefully considered.
 – Paying attention to detail in manufacturing process results in desired microstructures and consistency in mechanical – physical properties.
 – Alloy design methodology using HEA concepts on nickel superalloys resulted in several feasible/fabricable compositions.
Future Research and Follow-up Activities

- Understand the role of TMP in mechanical behavior on FCC-based HEA’s (reformulate HEA1 & HEA2)
- Determine grain boundary embrittlement mechanisms and remediate in precipitation strengthened FCC-based HEA’s (HEASA alloys)
- Apply alloy design philosophy to other alloy systems to hybridize them with the HE concepts
- Design philosophy improvement
 - Use ICME toolset to design “gradient” type behavior
 - Develop holistic view of microstructure design aside from entropy enhancement
- Continue corrosion / oxidations studies to understand potential
Future Research and Follow-up Activities

- Creep evaluation on modified alloys (ongoing with HEA 3B in determining activation energy for creep and creep stress exponent).

- Gain fundamental understanding of the extent of physical and mechanical performance (hardness, tensile, creep, etc.) of HEAs. Explore manufacturing options such as melt-solidification.

- Perform high-throughput screening of single-phase HEAs with face-centered cubic, body-centered cubic, and hexagonal closed-packed structures.

- Design and develop high-performance light-weight HEA’s.

- Design and develop HEA oxidation and corrosion resistant coatings with outstanding fracture toughness.

- Design and develop high-entropy compounds.