Advanced Materials Issues for Supercritical CO₂ Cycles (FEAA123)

B. A. Pint

Corrosion Science & Technology Group Materials Science and Technology Division Oak Ridge National Laboratory, Oak Ridge, TN 37831-6156 e-mail: pintba@ornl.gov

Project performance period: FY16-FY19

Research sponsored by DOE, Office of Fossil Energy Crosscutting Research Program (V. Cedro, project manager) Presentation for 2017 Crosscutting Research Project Review Meeting March 23, 2017

Acknowledgments

sCO₂: Jim Keiser - autoclave design Mike Howell - construction and operations Robert Brese - UTenn PhD student
G. Garner, M. Stephens - oxidation experiments
T. Lowe - characterization; T. Jordan - metallography
D. W. Coffey - TEM specimen preparation, FIB
D. Leonard - EPMA

Alloys: Haynes, Special Metals, ATI, Sumitomo, Sandvik... Research sponsored by: U. S. Department of Energy, Office of Fossil Energy, Crosscutting Research Program

Project is focused on studying materials in direct-fired supercritical CO₂

Goals and Objectives

Address materials issues for scaling up direct-fired sCO₂ Brayton cycle systems to higher temperatures for increased efficiency and larger size for commercial power production

Milestones

FY16

Data analysis on effect of temperature on reaction rates 6/2016 (done)
1 and 25 bar testing at three different impurity levels 2 of 3 complete
Complete construction of impurity effects test rig in progress
FY17

Complete analysis of reaction products as a f(T,P,...)3/2017Complete 500h, 300 bar exposures at 3 impurity levels6/2017Complete 2,500 h sCO₂ at a high H₂O content9/2017

Why use supercritical CO₂?

Potential supercritical CO₂ (sCO₂) advantages:

- no phase changes
- high efficiency
- more compact turbine
- short heat up
- less complex
- lower cost (?)

Direct- and indirect-fired sCO_2 Brayton cycles for:

- fossil energy (coal or natural gas)
- concentrated solar power
- nuclear (paired with sodium for safety)
- waste heat recovery/bottoming cycle

Many possible applications

Direct-fired system of special interest

Closed loop of relatively pure CO₂ - primary HX (>700°C) - recuperators (<600°C) Also, waste heat recovery, bottoming cycle for Fossil

Direct-fired (e.g. Allam cycle by Netpower) offers the promise of clean fossil energy:

In: natural gas $+ O_2$

Impurities: ~10%H₂O ~1%O₂, CH₄?, SO₂?

Out: CO₂ for EOR (enhanced oil recovery)

Different temperature targets

- Uncertainty about peak T for sCO₂ applications
- Fossil energy interest for power generation coal/natural gas: replace steam with closed cycle
- Direct-fired system may have very high peak T's: 1150°C combustor 750°C/300 bar turbine exit
- Indirect-fired: Primary HX operating at higher T

Materials for sCO₂ ~ A-USC steam

Temperatures (600°-750+°C) and pressures: challenge for strength limited number of materials available ! Adv. Ultra-supercritical (steam) same T range

Limited materials choices:

- capability
- ASME Boiler & Pressure Vessel Code:

Materials are key to: reliability availability maintainability

Oxygen levels similar in steam/CO₂ Factsage calculations: $CO_2 <-> 1/2O_2 + CO$

Similar pO_2 levels in steam & CO_2 , higher at 200bar All oxides of interest are stable

Why worry about 740/282? 5-10kh at 800°C still form thin reaction product in air

C in alloy ties up Cr, not available to form protective scale McCoy 1965: 600 & 18Cr-8Ni SS internally carburized in <u>1bar</u> CO_2 High ac predicted - what about NiCr in $sCO_2 + 1\%H_2O$?

Maybe we should be worried

Year 1 results from concentrated solar power study

Laboratory simulation of CSP duty cycle (700°C, 1 bar)

Tube creep rupture testing in supercritical CO₂

Sanicro 25 (Fe-22Cr-25Ni-3W-3Cu) showed accelerated mass gain (Fe₂O₃) after ~1500 h in 10-h cycles in industrial grade CO_2

LMP = T(in K) (20 + log(time in h)) Ni-base 740H showed decreased creep rupture lifetime at 750°C at longest exposure time in sCO₂ compared to high pressure air

Relatively little prior sCO₂ work Especially at >650°C and >200 bar

Several groups active in the past 10 years U. Wisconsin group has published the most results Temperature/pressure limited by autoclave design

ORNL sCO₂ rig finished in 2014

- ORNL design team: 100+ years of experience
- Haynes 282 autoclave 152mm (6") dia. 1ml/min flow

ORNL sCO₂ rig:

10

20

30

40

50

60 MPa

Range of alloys exposed Narrowing scope as project progresses

Several testing options

High temperature exposure in controlled gas environment 3-zone tube furnace

500 h cycles

500°-1300°C 500 h cycles

200°-800°C 500 h cycles Want to study sCO₂ impurity effects Goal: study effect of H₂O & O₂ on sCO₂ corrosion BUT, we can't pump impurities into sCO₂ gas AND can't monitor H₂O or O₂ level at pressure (1) 1 bar dry air,CO₂(99.995%),CO₂+0.15%O₂,CO₂+10%H₂O 2014-2015 results

- (2) Constructing rig for 300 bar/750°C testing Pumping system and detector being built
- (3) 1 & 300 bar: industrial vs. research grade CO₂ Starting experiments (IG sCO₂ for SunShot project)
- (4) 1 & 25 bar CO_2 vs. CO_2 +H₂O vs. +SO₂?

Test matrix in progress

New system under construction

Optical Detection Set-Up

Laser-based system to detect O_2 and H_2O in CO_2 at pressure (200-300 bar)

New system under construction

Optical Detection Set-Up

Laser-based system to detect O_2 and H_2O in CO_2 at pressure (200-300 bar)

RG vs. IG CO₂: initial comparison FE/CSP collaboration: 750°C: 500 h cycles

1 sample of each in first RG 200 bar exposures Multiple samples in future for better statistics

Industrial grade: ≤ 50 ppm H₂O and ≤ 32 ppm O₂ Research grade: < 5 ppm H₂O and < 5 ppm hydrocarbons

300 bar IG sCO₂: complete June 10 x 500 h cycles at 750°C w/SunShot

Industrial grade: \leq 50 ppm H₂O and \leq 32 ppm O₂

300 bar IG sCO₂: next RG sCO₂ 10 x 500 h cycles at 750°C w/SunShot

Industrial grade: \leq 50 ppm H₂O and \leq 32 ppm O₂

Also exposing model alloys 500-1000 h exposures, 300 bar 700°+750°C

Cast and rolled M-Cr alloys Ni-Cr alloys more protective Several Fe-base alloys stopped at 500h Fe-20Cr-25Ni - protective (FCC slower D_{Cr}) Fe-25Cr+Mn,Si - protective Characterization in progress

Comparing 1 + 300 bar IG sCO₂ If P not important, large 1 bar database!

Dashed lines - median value of 4-5 1 bar specimens Initial results: slightly different ordering (310,247) Now starting 1 bar RG CO₂

Industrial grade: \leq 50 ppm H₂O and \leq 32 ppm O₂

Baseline of laboratory air 500 h cycles at 750°C

Dotted lines - median value of 4-5 1 bar specimens Initial results: air similar to 1 bar CO_2

Need to compare rates & ignore transient effects

800°C: only 304H showed P effect

Odd that higher pressure showed less attack

800°C: only 304H showed P effect

Odd that higher pressure showed less attack

Round robin testing starting Project led by Oregon State, including NETL + UW

200 bar RG sCO₂ 550° and 700°C 3 x 500 h cycles 4 alloys each 6 specimens

Two cycles complete at 700°C specimens removed at 500 and 1000 h high mass gain for 316SS 550°C: IN740 replaced by T91

Summary: direct-fired sCO₂ project

Several experiments planned to study H_2O and O_2 effects in supercritical CO_2 , need a system that:

- can pump control impurity levels at 300 bar?
- detect levels entering and leaving autoclave to study conditions relevant to direct-fired cycles

Additional experiments:

- (1) comparing industrial and research grade CO_2
- 1 and 300 bar
- collaboration with DOE SunShot-funded project (2) comparing 1 & 25 bar CO_2 & $CO_2+10\%H_2O$
- thin oxides formed on higher-alloyed materials
- no clear effect of impurities from this data

- last condition to be run CO₂+10%H₂O+0.1%SO₂ More characterization: TEM & GDOES

backup slides

Ni-base alloys: thin scales

All thin Cr-rich or Al-rich scales in 20 MPa sCO₂

282 deeper Cr depletion than 740

EPMA depth profiles beneath scale at 750°C

740: 49Ni-24.6Cr-20Co-0.5Mo-1.3Al-1.5Ti

Steels exposed at 400°-600°C 500h exposures in 20 MPa CO₂

Industry interested in where low-cost alloys can be used

Little effect of pressure observed

500h exposures at 750°C Core group of 12 alloys evaluated

Typical Fe-rich oxide on Gr.91

However, inner/outer ratio appears to change with P Outer Fe_2O_3/Fe_3O_4 layer Inner $(Fe,Cr)_3O_4$ layer Grade 91: Fe-9Cr-1Mo

Some thin-protective Cr-rich scale at 1bar

light microscopy of polished cross-sections

750°C: initial tensile experiments showed little effect of sCO₂

25mm tensile bars exposed at each condition Tensile test at room temperature: 10⁻³/s strain rate

