VEOLIA UCR

NATIONAL

DOE Award No. DE-FE0024074

TECHNOLOGY LABORATORY

Fouling Resistant Membranes for Treating Concentrated Brines for Water Reuse in Advanced Energy Systems

Zachary Hendren¹, Rachael Guenter¹, Elliot Reid¹, Young Chul Choi¹, Wenyan Duan², Alexander Dudchenko², David Jassby²

Crosscutting Research Portfolio Review March 23rd 2017, Pittsburgh PA

¹ RTI International, Energy Technology Division (zhendren@rti.org)
² UC Riverside, Bourns College of Engineering

RTI International is a registered trademark and a trade name of Research Triangle Institute.

www.rti.org

Period of Performance: 10/1/2014 to 9/30/2017

Project Goals and Objectives

Project Objectives:

- Demonstrate the efficacy of membrane distillation (MD) as a costsavings technology to treat concentrated brines that have high levels of total dissolved solids (TDS) for beneficial water reuse.
- Develop a novel, fouling-resistant nanocomposite electrically conductive membrane that will reduce the need for chemicals to address membrane scaling due to the precipitation of divalent ions in high-TDS wastewaters.

#	Milestone Title	Milestone Completion Date	Verification Method
1	Successful demonstration of ECMD membrane	4/15/15	Experimental demonstration of simultaneous MD and EC applied.
2	Feasibility of MD technology for treating produced waters with total-dissolved-solids concentration of at least 180,000 mg/L	9/4/15	Experimental data showing that at least 50% clean water recovery can be achieved
3	Enhanced fouling resistance of conductive MD membranes	5/31/17	Experimental data showing that relative water flux of at least 0.8 can be maintained with highly scaling waters
4	Conductive membrane model validation	6/30/17	Model validated (r² > .8) with experimental data

Presentation Outline

- Background
- Experimental results
- Modeling results
- Preliminary cost assessment comparison
- Future work and summary

RTI International

delivering the promise of science for global good

INTERNATIONAL

improving the human condition. We combine scientific rigor and technical expertise in social and laboratory sciences, engineering, and international development to deliver solutions to the critical needs of clients worldwide.

Energy Technology Research at RTI International

ENERGY TECHNOLOGIES

Developing advanced process technologies for energy applications by partnering with industry leaders

Carbon Capture & Utilization

Syngas Processing

Biomass

Conversion

Advanced Materials

Focused on Applied Research (concept to demonstration) in Partnership with Government Agencies, Academia, and Industry

Project Concept: Electrically Conductive Membranes + Membrane Distillation = ECMD

ECMD Test Cell

- Plate-and-frame flat sheet single membrane test cell
- Continuous data logging of operating parameters
- Test run in countercurrent configuration
- External electrical supply for AC/DC voltages
- Membrane as anode or cathode

Scaling Resistance for Calcium Sulfide

Membrane	Feed T (°C)	EC voltage	Time (min)	Volume recovered (%)
CNT-PVDF	60	0V	1079	39%
CNT-PVDF	60	1V	993	49%
CNT-PVDF	60	3V	1382	64%

To reach 75% relative flux

Scaling Resistance for Calcium Chloride

Feed = $CaCO_3$ scaling solution:

- 0.0072 CaCl₂
- 0.0107M KCl
- 0.0047 MgCl₂

 $T_f = 60^{\circ}C$

 $T_{p} = 20^{\circ}C$

Average salt rejection >99.99%

Membrane	Feed T (°C)	EC voltage	Volume recovered (%)
CNT-PTFE	60	0V	14%
CNT-PTFE	60	1V	17%
CNT-PTFE	60	3V	25%
CNT-PTFE	60	5V	29%

Scaling Resistance for Strontium Sulfide

Mechanisms for Scaling of Membrane Surface

- Charge barrier is ~20Å at 3V
- The diameter of CaSO₄ nuclei ~15Å*
- Deposition of non-ionically charged particles accounts for scaling buildup

*Lochhead, M.J., Letellier, S.R., & Vogel, V. (1997). Assessing the role of interfacial electrostatics in oriented mineral nucleation at charged organic monolayers. The Journal of Physical Chemistry B, 101(50), 10821-10827.

Modeling Ion Concentrations and Charge on ECMD Surface

Increasing surface charge increases the thickness of the ion layer along the surface, with a corresponding decrease in the rate of scaling for a given concentration.

For charged surfaces >200mV use modified Poisson-Boltzmann (MPB) to predict ion concentrations near a charged surface.

Where:

- ψ = electrical potential,
- z = valence of ions
- e = elementary charge,
- N_A = Avogadro's number
- *T* = Temperature
- c = ion concentration
- k = Boltzmann constant

Modeling Ion Concentrations and Charge on ECMD Surface

For charged surfaces >200mV use modified Poisson-Boltzmann (MPB) to predict ion concentrations near a charged surface.

Where:

- ψ = electrical potential,
- z = valence of ions
- e = elementary charge,
- N_A = Avogadro's number
- T = Temperature
- c = ion concentration
- k = Boltzmann constant

Voltage Distribution at Large Scale

0 is center of film between metal electrodes

1 - 6300 Ω/square CNT, 600 Ω/square counter electrode 2 - 3000 Ω/square CNT, 600 Ω/square counter electrode 3 - 1000 Ω/square CNT, 600 Ω/square counter electrode 4 - 100 Ω/square CNT, 600 Ω/square counter electrode Electrical strip For 3V applied and 1.5V min loss tolerance: min contact gap (1) = 9cm min contact gap (2) = 16cm min contact gap (3) = 24cm min contact gap (4) = 45cm

Full Scale ECMD Module Design Considerations

Electricity delivery

- Ensure leak free module design
- Maintain charge along larger surface

Counter electrode

- Carbon cloth as substitute for titanium?
- Vary location and size of counter electrode
- Power consumption
 - Current leakage across high TDS fluid
 - Effect of module configuration/spacer distance on potential power consumption

ECMD vs MD Cost Comparison Projection

- Use 1 million gallons/day capacity to compare costs of MD to ECMD.
- Assume 180,000 mg/L feed and 50% recovery.
- Pre-treatment and energy heat energy consumption not yet accounted for.

MD/ECMD operating conditions:

- 8 LMH nominal flux (without scaling)
- Module membrane surface area 26 m²
- T_f = 70°C
- T_p = 20°C
- Average salt rejection >99.99%

ECMD vs MD Cost Comparison Projection

- Two areas where cost trade-offs occur when comparing standard MD and ECMD:
 - Operating costs chemical usage and electricity usage
 - Differences in the capital costs will be expressed: (1) membrane module costs (CNT addition, added hardware components) and (2) the effective processing capacity (EPC) that will dictate overall system size
- Baseline MD/operating assumptions include:
 - 26 m² membrane area per module
 - Chemical cleaning at relative flux = 0.75
 - Each cleaning event takes 8hrs, uses both acid/base membrane CIP
 - Target recovery for plant = 50%

ECMD/MD Cost Comparison – operating costs Δ

	MD	ECMD
Feed Flow (MGD)	1	1
Recovery (%)	50%	50%
Required membrane area (m ²)	~17,000	~10,000
No. of modules	400	650
Citric acid use (kg/yr)	85400	7500
Sodium Hydroxide use (kg/yr)	56900	4990
Additional electricity (kWh/yr)	N/A	69241
Chemical cost (\$/yr)	\$111,003	\$9,734
Additional elec. use (\$/yr)	N/A	\$8,309
Module Cost (\$/req. membranes)*	\$325,000	\$400,000

*de Lannoy, C. F., Jassby, D., Davis, D., & Weisner, M. (2012). A highly electrically conductive polymer -- multiwalled carbon nanotube nanocomposite membrane. Journal of Membrane Science.

ECMD/MD Cost Comparison – operating costs Δ

Lab results showed 2.7 mA/m² at 3V, we assumed 10-fold increase in power requirements for scale up so used 270 mA/m² current density ~ 20 kWh/day for 1 MGD system.

The reduction in scaling needed (and corresponding decrease of acetic acid/sodium hydroxide) to break even from a daily operational cost standpoint is **9%**.

ECMD/MD Cost Comparison – capital cost Δ

	MD	ECMD	
Feed Flow (MGD)	1	1	
Recovery (%)	50%	50%	
Required membrane area (m ²)	~17,000	~10,000	
No. of modules	400	650	
Citric acid use (kg/yr)	85400	7500	
Sodium Hydroxide use (kg/yr)	56900	4990	
Additional electricity (kWh/yr)	N/A	69241	ECMD = 400 modules/10,000
Chemical cost (\$/yr)	\$111,003	\$9,734	
Additional elec. use (\$/yr)	N/A	\$8,309	MD =
Module Cost (\$/req. membranes)*	\$325,000	\$400,000	650 modules/17,000

38% smaller footprint since fewer modules needed for same flow due to increased EPC

ECMD/MD Cost Comparison – capital cost Δ

38% smaller footprint since fewer modules needed for same flow due to increased EPC

ECMD/MD Cost Comparison – capital cost Δ

	MD	ECMD	
Feed Flow (MGD)	1	1	
Recovery (%)	50%	50%	
Required membrane area (m ²)	~17,000	~10,000	
No. of modules	400	650	
Citric acid use (kg/yr)	85400	7500	
Sodium Hydroxide use (kg/yr)	56900	4990	
Additional electricity (kWh/yr)	N/A	69241	
Chemical cost (\$/yr)	\$111,003	\$9,734	
Additional elec. use (\$/yr)	N/A	\$8,309	
Module Cost (\$/req. membranes)*	\$325,000	\$400,000	

- Increased capital cost of membrane modules will likely be offset by reduced capital needed for additional piping, valves, etc. as well as reduced overall footprint.
- Membrane module cost estimation will vary depending on materials of construction, hardware, and power supply.

Remaining Items to be Included in TE Analysis

- Determine maximum recovery and scaling resistance of high TDS real wastewater
- Identify pre-treatment requirements
- Heat source costs and recovery method for MD
- Comparison to include thermal evaporator technology (energy efficiency vs. lower capital investment) and deep well injection
- Residuals management and disposal

Summary of Results

- ECMD shown to be effective for calcium sulfate and calcium chloride scaling, not for strontium sulfide scaling (real wastewater TBD).
- The charge repulsion is minimally impacted by temperature and concentration.
- The expected tradeoffs between the increased electricity requirement and the reduction in required chemicals is likely to be favorable.

Acknowledgements/Disclaimer

- Department of Energy National Energy Technology Laboratory project manager: Jessica Mullen
- RTI: Rachael Guenter, Elliot Reid, Young Chul Choi
- UC Riverside: Wenyan Duan, Alexander Dudchenko, David Jassby
- Veolia: Adrien Moreau, Herve Buisson

Disclaimer:

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Thank You!

delivering the promise of science for global good

Zachary Hendren, PhD. Energy Technology Division <u>zhendren@rti.org</u> (919) 541-6605

Baseline MD & ECMD Membrane Performance (1M NaCl)

Feed	PVDF	0.22µm	CNT-PVD	CNT-PVDF 0.22μm		PVDF 0.45μm		CNT-PVDF 0.45μm	
(°C)	Flux (LMH)	Rejection (%)	Flux (LMH)	Rejection (%)	Flux (LMH)	Rejection (%)	Flux (LMH)	Rejection (%)	
50	12.0	99.98	11.4	99.99	19.0	99.97	n/a	n/a	
60	22.0	99.99	19.1	99.99	31.3	99.99	n/a	n/a	
70	39.4	99.99	33.1	99.99	53.3	99.99	n/a	n/a	

(Permeate T=20°C)

CNT coating decreases flux; salt rejection is maintained.

!!!CNT coating entered pores and allowed liquid to pass through

Technology Development Concept – From Bench to Pilot to Full Scale

Test Cell: 1 mL/min

Full size plant: 50 million gallons/day

Address Scaling/Fouling with Carbon Nanotube

CNT-PA Electrically Conductive NF Membrane

Smallest Commercial membrane: 2.2 L/min