A Pollution Prevention and Economically Viable Technology for Separation of Rare Earth Elements (REEs) from Powder River Basin Coal Ashes (DE-FE0027069)

PI and Co-PIs: Maohong Fan1^{1,*}, Hanjing Tian², Eric Williams³, Gabrielle Gaustad³, Hertanto Adidharma¹, Maciej Radosz¹

Other team members: Zaixing Huang¹, Kai Li¹, Kaiying Wang¹, ChooiKim Lau¹, Yan Luo², Saptarshi Das³

1- University of Wyoming; 2-West Virginia University, and 3-Rochester Institute of Technology

* Corresponding PI: mfan@uwyo.edu, (307) 766 5633

Main goals

- Identify and sample developable amount of coal ashes that have at least 300 ppm REEs as well as characterize the coal ashes
- Successfully develop robust processes to produce "green" solid containing at least 2.0 weight % total REE content on an elemental basis and measured on a dry basis from PRB coal ashes with high overall recovery efficiency of RREs in coal ashes and low pollutant emission
- Reduce REEs recovery energy consumption compared to current commercialized REE recovery technologies
- Decrease the overall coal ash based REEs recovery cost compared to current commercialized REE recovery technologies

Experiments

Raw Materials – Safe and inexpensive as well as widely available

- Raw materials containing REEs
 - Solids (which can contain low than 300 ppm REEs)
 - <u>Coal ashes targets</u>
 - Overburdens or other solids containing REEs
 - Sludge from various processes
 - Ores
 - Liquids
 - Waste water from coal mining and coal-based energy industries
 - Any other produced and waste waters containing REEs
- Extracting agents
 - Wastes or low-cost materials

Extraction Operation - Green and Short as well as Simple

- Low **or** zero <u>**net</u>** addition of cations and anions to the close REEs extraction system</u>
- Water from REEs extraction
 - Containing almost zero external species
 - Reused internally for multicycle REEs extraction
- Zero air pollutant emission
- Zero addition of anions and cations to the after-REEsextraction coal ashes

Extraction Operation – Green and Simple as well as Multifunctional

- Operation steps are designed to
 - Be short
 - Be multifunctional
 - Have high selectivity for collecting desired species
 - Achieve maximum atom economy
 - Based on the integration of
 - REEs chemistry
 - Theories for separations of homogeneous and heterogeneous mixtures
 - Aqueous chemistry
 - Solid-state chemistry
 - Environmental chemistry
- Inexpensive and safe materials are used
- Generation of at least two value-added products in addition to the major desired product, REEs-containing solid.

Major Results Achieved for the Project

• Extraction process – Green

- Operation steps are designed to
 - Be short
 - Be multifunctional
 - Have high selectivity for collecting desired species
 - Achieve maximum atom economy
 - Based on the integration of
 - REEs chemistry
 - Theories for separations of homogeneous and heterogeneous mixtures
 - Aqueous chemistry
 - Solid-state chemistry
 - Environmental chemistry
- Less expensive materials are used
- Safer materials are used
- Generation of at least <u>two value-added products</u> in addition to the major desired product, <u>REEs-containing solid</u>.

REEs Extraction Lab

Extraction Apparatus

Grinding and C-H-N-S Analysis Equipment

BET and REEs Analysis Equipment

Results

>300 ppm REEs Containing Fly Ashes

Pinpoint the progress of finding coal fly ashes

>300 ppm REEs Containing Fly Ashes

Some Fly Ashes Collected from Power Plants

>300 ppm REEs Containing Fly Ashes

- Number of power plants contacted: 43
- Tons of fly ashes available: ~150 M tons
- Tons of fly ashes containing > 300 ppm REEs
 - Known: ~ 48 M tons in collected ~ 58 M tons
 - Unknown: ~ 100 M tons to be tested

Characteristics of Several Targeted Samples

Sample ID	C (%)	H (%)	N (%)	S (%)
СН	0.88	0.21	0.03	4.19
DJ	0.89	0.82	0.06	5.58
FS	1.8	0.31	0.03	3.41
JE	0.52	0.01	0.02	1.28
LR	0.26	0.25	0.02	0.91
WD	0.56	0.24	0.04	3.5

Characteristics of Several Targeted Samples

BET surface area

Sample ID	Surface area/m ² ·g ⁻¹
СН	1.734
DJ	13.743
FS	5.990
JE	0.076
LR	0.905
WD	19.320

Moisture and organic carbon

		Organic
Sample	Moisture	carbon
ID	(%)	(%)
СН	0.41	1.91
DJ	6.54	4.26
FS	0.84	2.91
LR-1	0.37	0.61
LR-2	0.08	0.43
WD	1.23	3.08

REEs Concentrations in Several Fly Ashes (Dry Ash Basis)

DAB (dry ash basis)	CH (ppm)	DJ (ppm)	FS (ppm)	LR-1 (ppm)	LR-2 (ppm)	WD (ppm)
Ce	170.1	148.9	153.5	159.7	171.1	167.5
Dy	11.0	12.8	14.2	11.9	14.9	15.6
Er	7.0	7.4	8.3	7.4	9.0	8.9
Eu	3.6	4.7	5.3	3.8	5.8	5.4
Gd	14.4	16.5	22.4	15.2	22.4	23.6
Но	2.2	2.5	2.8	2.4	2.9	3.0
La	90.7	79.5	77.6	86.9	89.0	87.0
Lu	1.2	1.1	1.2	1.2	1.3	1.2
Nd	101.9	96.0	102.6	98.5	109.3	111.1
Pr	23.5	18.1	23.7	22.6	24.8	25.4
Sm	15.1	16.9	23.1	15.4	23.8	24.0
Tb	1.9	2.2	2.5	2.0	2.5	2.7
Tm	1.1	1.1	1.2	1.1	1.3	1.2
Y	61.8	65.5	72.2	68.6	76.8	76.4
Yb	6.9	6.8	7.4	7.1	8.2	7.8
Total REEs (ppm)	512.4	480.2	517.8	503.6	563.1	561.0

Piles of REEs Containing Samples from Leaching and Separation Processes for ICP-MS Analysis

Piles of REEs Containing Samples from Leaching and Separation Processes for ICP-MS Analysis

Recovery Efficiencies of REEs in Fly Ashes

- High REEs recovery efficiencies are achievable with the new method which is
 - Environmentally friendly
 - Highly selective
 - Inexpensive

Recovery Efficiencies of REEs in Coal Overburden

- Coal overburden in Wyodak contains ~ 150 ppm REEs
- The new REEs extraction method works well for overburden
 - 83-93% REEs extraction efficiencies were achieved
 - The conditions for extracting the REEs from overburden are milder than those with fly ashes
 - It is anticipated that the concentrations of REEs in REEs-containing products are higher

REEs Separation

 High separation efficiency for the two approaches

	% REEs in product	
Conditions	(REEs-containing solids)	
1	2.1	
2	3.5	
3	2.7	
4	3.7	
5	6.0	
6	7.6	
7	8.2	
8	10.8	

By-products

- The process generates highly valuable by-products along with REEs oxides
 - Al/Fe (coagulants)
 - Sc (\$4,200,000/ton)
- The green nature of the recovery method makes ashes re-usable after REEs recovery

Photos of the Products Containing Different % of REEs (elements based)

2%

10.8%

SEM-EDS Images of REEs-Containing Solid

SEM-EDS Images of REEs-containing Solid

- A- The morphology image indicate the presences of various undesired material in the REEs-containing solid or product
- B- Dispersion image clearly show the existence of the four major REEs in the product
- C- The semi-quantitative analyses of REEs in the REEs-containing solid with SEM-EDS
 - Major REEs in the solid are Ce, La, Nd and Y
 - Major inorganic impurities are Ca, Fe, Mg, Al and Si
 - The concentrations in the table are close to with those detected with ICP-MS

Environmental Impact

- Conventional method
 - Heavy metals/radioactive/ water/gas emission
 - Waste gas (9,600-60,000 m³/ton REEs)
 - Flue gas concentrate
 - HF
 - SO₂
 - H_2SO_4
 - Acid water (200 m³/ton REEs)
 - Radioactive waste (1.4 tons/ton REEs)

Navarro and Zhao, 2014

- New method
 - No heavy metals/ radioactive waste discharge
 - No air pollution
 - Water reuse
 - Ash reuse

Cost-Effectiveness

•

> 50% energy consumption	• $> 30\%$ cost reduction – Why?
reduction – why?	• Materials – Inexpensive
• Equipment – Simple	• Waste materials from other industries can be used for recovering REEs
• Operation – Safe and easy	 Capital investment – Low
• Process – Short	 Labor requirement – Low
• Extraction condition - Mild	• Emission and discharge control or secondary

pollution prevention – Almost zero

DEOs	Primary Energy	GHG	
KEUS	MJ/kg	kg CO ₂ -e/kg	
La	177	9.3	
Ce	157	8.3	
Pr	798	41.4	
Nd	743	38.5	
Sm, Eu, Gd (mixed oxide)	1,074	55.6	Haque et al., 2014

Conclusions

- All the goals set for the project are achieved, especially
 - The actual REEs concentrations (the highest one to date: 10%) in products >> the set goal (2%); and >10% or >> 10% is achievable.
 - The tons of qualified coal ashes we found >> the set goal (10 M tons)
- A new pathway for producing critical materials REEs is opened by integrating the knowledge from multi fields
 - With various desired characteristics
 - Without the limitation of location and time
- The new pathway makes impossible possible in REEs production field huge amounts of conventionally considered unrecoverable REEs can be recovered with the transformational technology
- The new pathway could inspire the significant advancement of new theories in chemistry and technologies in mineral processing industries