

Adaptive Electrical Capacitance Volume Tomography for Real Time Measurement of Solid Circulation Rate at High Temperatures

Project Investigator: Tech4Imaging LLC, 1910 Crown Park ct., Columbus OH 43235

PI: Qussai Marashdeh, <u>marashdeh@tech4imaging.com</u>

Meeting: Crosscutting Meeting 2017

Date: 03/22/2017

DOE award #: DE-SC0011936

Period of Performance: July 2015-July 2017

Subcontractors: The Ohio State University (Professor Fernando Teixeira & Zeeshan

Zeeshan)

Project Goals & Objectives

 The main technical objective of Phase II is to develop a functional AECVT demonstration system for real-time imaging and measurement of multiphase flows at high temperature.

Year 1 Milestones:

- 1. Finalize AECVT sensor designend of 2nd quarter.
- 2. Development of software for SART reconstruction techniqueend of 4th quarter.
- 3. Fabrication of adaptive data acquisition system- end of 5th quarter.

Year 2 Milestones:

- 1. Fabrication of AECVT sensor- end of 5th quarter.
- 2. Finalize image reconstruction and feature extraction- end of 7th quarter.
- 3. Demonstrate integrated system- end of 7th quarter.
- 4. Finalize GUI- end of project.
- 5. Finalize demonstration unit and develop virtual experience- end of project.

Presentation Outline

- Introduction to ECVT & AECVT
- Electronic Design
- Simulations
- Experimental validation
- Schedule

IMAGING Electrical Capacitive Volume Tomography

- ❖ Electrical Capacitance Volume Tomography (ECVT) is a low cost noninvasive imaging technique to find the volumetric dielectric distribution from inter-electrode capacitance measurements.
- ❖ Electrodes respond differently to the change in permittivity distribution inside the sensing domain. These mutual capacitances are used to reconstruct the dielectric distribution in the sensing domain.
- ❖ ECVT is used in nondestructive testing, imaging of multiphase flows and for imaging of combustion flames and fluidized beds.
- ❖Adaptive ECVT (AECVT) is a high resolution sensor formation that can form many electronic synthetic plates.

ECVT Sensor Model

The inter electrode capacitance is computed by

$$C = -\frac{1}{V} \iint_{\Gamma} \varepsilon(x, y) \nabla \phi(x, y) \cdot ndS.$$

The first order linear approximation $\Delta \mathcal{C} = \frac{d\xi}{d\varepsilon} (\Delta \epsilon) + \mathcal{O}((\Delta \epsilon)^2)$

$$\mathbf{C}_{\mathbf{M}\times\mathbf{1}}=\mathbf{S}_{\mathbf{M}\times\mathbf{N}}\mathbf{G}_{\mathbf{N}\times\mathbf{1},}$$

Where $M = \frac{n(n-1)}{2}$ are the number of independent sensor measurements, N is the number of pixels in the sensing domain and the sensitivity matrix S is defined as

$$S_{ij}[n] = \frac{1}{V_i V_j} \int_{v[n]} \nabla \varphi_i \cdot \nabla \varphi_j dv$$

ECVT Challenges

- ► ECT image reconstruction is an ill-posed and ill-conditioned inverse problem.
- ➤ Solution is very sensitive to measurement errors.
- Number of independent measurements are limited due to SNR considerations (setting a minimum electrode plate size) hence problem is underdetermined.
- Image reconstruction algorithm does not cater for soft-field nature of the ECT sensing field (quasi-static Laplacian field).
- >Limited spatial resolution.
- Fast and robust reconstruction algorithms for real time applications.

Adaptive ECVT Sensor

- Adaptive ECVT sensor allows the small segments to be electronically combined in an arbitrary fashion into synthetic electrodes.
- Individual segments can also be excited differently.
- The number of independent measurements can be increased while maintaining a minimum (synthetic) electrode size from SNR considerations.
- AECVT sensor is easily reconfigurable.

Conventional ECVT Sensor

Adaptive ECVT Sensor: AECVT

Electronic Design Activation Scheme

Adaptive Data Acquisition System (DAS)

ECVT DAS: 36 channels ECVT DAS: 288 channels

AECT SENSOR CONFIGURATIONS

Sensor	No. of Electrodes	Measurements		
ECT	12	66		
AECT: 2 Segment	36	594		
AECT: 3 Segment	36	558		
AECT: 4 Segment	36	522		
AECT: 6 Segment	36	450		

- > AECVT sensor can be activated using the axial and azimuthal scanning modes.
- > These electronic scanning modes increase the number of measurement while retaining the (synthetic) electrode size and hence the minimum SNR.

AECVT Sensor Model Analysis

Sensor	No of Electrodes	Condition Number		
Conventional	24	9.034×10^{3}		
Axial 3×3	60	1.753×10^{8}		
Azimuthal 3×3	72	5.492×10^{14}		
Full-scan 3 × 3	180	6.065×10^{16}		

Imaging Resolution in AECT

Spectral Plot for AECT

Resolution Test Configuration

Imaging Resolution

TECH IMAGING AECT Experimental Results with 18 Electrode Sensor

Experimental Setup

TECHIMAGING

Image reconstruction results based on the Landweber algorithm for two test objects at the three sucessive positions indicated in Fig. 12 for: (a)-(c) Conventional 12-electrode ECT sensor, (d)-(f) 18-segment AECT sensor with synthetic electrodes comprised of 3 segments, and (g)-(i) 18-segment AECT sensor with synthetic electrodes comprised of 2 segments.

ECT12 Electrode Sensor

AECT18 Electrode 3 Segment Sensor

AECT18 Electrode 2 Segment Sensor

Space Adaptive & Field Imaging

Sensor Scanning

Cumulative Sensitivity Distribution

Sparse Measurements and Near Field Imaging

TECH IMAGING High Resolution Imaging-Objectives

ECT Imaging resolution can be quantified by

- 1. Spatial Resolution
- 2. Permittivity Contrast (Radiometric Resolution)

The other Parameters of interest include Center of the Object

- 1. Shape and Size
- 2. Correlation between the true and reconstructed image

Sensor Parameters to Select are:

- 1. Electrode Size
- 2. Imaging Domain Size
- 3. Number of Measurements

Reconstruction Methods

- 1. LandWeber
- 2. DROP

Spatial Resolution Enhancement using SART

Image reconstruction results. Test objects.

TECH IMAGING High Resolution Imaging-Problem Formulation

SART Reconstruction Results

Conventional Reconstruction

SART Reconstruction

Phase II Schedule

<u>Task 1</u>: Electrical design of AECVT sensor for high temperatures

<u>Task 2</u>: ECVT sensor mechanical design for high temperatures

Task 3: ECVT sensor fabrication

Task 4: Build test chamber

Task 5: Data Acquisition System (DAS) firmware and electronic design

Task 6: Testing

Task 7: Implement image reconstruction algorithm based on developed SART technique

Task 8: Develop feature extraction

Task 9: System integration and testing in real-time

<u>Task 10</u>: *Software interface*

<u>Task 11</u>: Finalize demonstration unit

Tasks	Project period (Quarter)							
	1	2	3	4	5	6	7	8
Task 1								
Task 2								
Task 3								
Task 4								
Task 5								
Task 6								
Task 7								
Task 8								
Task 9								
Task 10								
Task 11								

Phase II Milestones

Year 1 Milestones:

- 1. Finalize AECVT sensor designend of 2nd quarter.
- 2. Development of software for SART reconstruction techniqueend of 4th quarter.
- 3. Fabrication of adaptive data acquisition system- end of 5th quarter.

Year 2 Milestones:

- 1. Fabrication of AECVT sensor- end of 5th quarter.
- 2. Finalize image reconstruction and feature extraction- end of 7th quarter.
- 3. Demonstrate integrated system- end of 7th quarter.
- 4. Finalize GUI- end of project.
- 5. Finalize demonstration unit and develop virtual experience- end of project.

Conclusion

- Higher ECVT resolution is directly proportional to increased number of plates.
- Adaptive ECVT (AECVT) is based on substantial increase in number of synthetic plates using plate segmentation.
- Adaptive ECVT is a new technology at the frontier of higher resolution capacitance imaging:
 - Infinite options of plate arrangements and independent number of measurements
 - Maintain High SNR of acquired measurements
 - Ability to beam ECVT resolution toward a desired region
 - Ability to Zoom ECVT resolution toward a desired region
- More work is required for Algorithm development and testing.

Acknowledgement

