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Combination of the advantages of
• Optical fiber sensing: 
Distributed sensing; 
Survivability in harsh environments: 
Immunity to electromagnetic interference

• Acoustic sensing: 
Noncontact approach
Penetration depth 

Other applications: 
• Corrosion monitoring
• Imaging

AdvantagesAdvantages



Learning with Purpose 3 PI: Xingwei Wang Page  

Patent application: 
2016 Xingwei Wang, Nan Wu, “Photoacoustic 
Probe”, WO2016178981 A1, WO2012112890A2; 
EP2675361A2; US20130319123A1; 
WO2012112890A3. 
PCT nationalization coming up in November, 2017.
One company is interested in optioning UML 15-32 
IP and explore its commercialization.

Patent Application and OptioningPatent Application and Optioning
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 Brief overview of DOE project

 Sensing system development

 Signal processing

 Temperature reconstruction algorithm 

 Conclusions & Future work

OutlineOutline
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IntroductionIntroduction

 Reconstruct the 3D high temperature distribution within a boiler
with a novel fiber optic distributed temperature sensing system that
uses optically generated acoustic waves.

Overview of DOE project.

Distributed optical 
fiber sensing system

Active sensing element

Boiler

Reconstruction algorithm

+

Reconstructed 
temperature distribution

Distributed sensing system

Boiler
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IntroductionIntroduction
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 Speed of acoustic waves depend
on the temperature of gaseous
medium.

 The TOF (time-of-flight) of an
acoustic signal over a propagation
path can be calculated as:

the velocity of sound at position
the ratio between the specific heats at constant pressure and volume of the gas  
the reciprocal of velocity
the number of paths;
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Z
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Principle of DOE project.

Distributed sensing system

Boiler (c)

Optical fiber
Active sensing element
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 Brief overview of DOE project
 Sensing system development

1. Photoacoustic generator 
- Principle
- Tip generator
- Sidewall generator

2. Signal receiver 
- Fiber Bragg grating (FBG) fiber sensor
- Fabry-Perot (F-P) fiber sensor

3. Temperature measurement
- Water temperature measurement
- Steel plate temperature measurement
- Air temperature test and reconstruction

4. Distributed sensing capability test
5. GE pilot test 
6. Furnace test 

 Signal Processing
 Temperature reconstruction algorithm
 Conclusions

OutlineOutline
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PhotoacousticPhotoacoustic

Photoacoustic principle

Acoustic pulseLaser pulse
PA generation 

material

Photoacoustic definition

 Note: The PA principle is an optical approach to generate ultrasound signals [1, 2]. It
involves a PA generation material which absorbs the optical energy from the laser and
converts it into a rise in localized temperature.
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PhotoacousticPhotoacoustic
Simulation of photoacoustic

Schematic of a fiber-optic photoacoustic generator 
[3]

2D-axisymmetric FEA model of the photoacoustic generator
Acoustic pressure distribution at 2 μs generated by 
an absorption layer (100 μm thick)
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PhotoacousticPhotoacoustic
Simulation of photoacoustic

Acoustic pressure at the monitoring point for different 
laser pulse durations (100, 150, and 200 ns.)

Acoustic pressure at the monitoring point for 
different layer thicknesses (10–140 μm)
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PhotoacousticPhotoacoustic

Photoacoustic materials

First Test
(mV)

Second Test 
(mV)

Third Test
(mV)

Average
(mV)

Carbon Black 1 3.0 3.0 2.8 2.93

Carbon Black 2 2.9 2.5 2.6 2.67

Carbon Black 3 2.2 2.2 2.4 2.27

Carbon Black 4 2.4 2.6 2.5 2.50

Carbon Black 5 2.1 2.1 2.2 2.13

Gold Nanocomposite 2.5 2.2 2.3 2.33

Ultrasound signal strength generated by different photoacoustic materials

 Carbon Black 1-4 are 20% Carbon black (partial size 20 nm) + PDMS.
 Carbon Black 5 is 20% Carbon black (partial size 101 nm) + PDMS.
 Gold-nanocomposite is 12% Gold-nanoparticle + PDMS.
 Carbon Black 5 had the lowest ultrasound signal, due to it being used many times, which may have caused

damage to it.
 Carbon Black 3 generated a low ultrasound signal because the thickness and the size of it was smaller than

the others.

Different photoacoustic materials
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Tip generatorTip generator

Microscope photo of the tip generator [1]
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Tip generatorTip generator
Photoacoustic materials coated on glass slide
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Ultrasound signals at different distances.

 Note: This fiber optic ultrasound transducer system worked at a
distance of 1 meter.

Experimental setup
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Sidewall generatorSidewall generator
Sidewall configuration 1

Coat gold nanocomposite on the sidewall of
optical fibers [4].

Experiment setup: test a sidewall generator.

Sidewall ultrasound generator configuration 1.
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Acoustic signal generated from sidewall configuration 1.
 Note: Generated ultrasound signal was from the sidewall of a 400/425 μm fiber. A 532 nm

Nd:YAG nanosecond laser (Surelite I-10, Continuum) was utilized as the optical radiation source.
A hydrophone (HGL-0200, Onda) was used as a receiver to collect the ultrasound signals.
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Sidewall generatorSidewall generator
Sidewall configuration 2

Sidewall fiber generator mounted on an aluminum plate [4]. Sidewall ultrasound generator configuration 2.

Experimental setup: test the sidewall
ultrasound generator configuration 2.
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Acoustic signal generated from sidewall 
ultrasound generator configuration 2.

 Note: Ultrasound signal generated from this configuration on the aluminum plate was much 
higher than pervious configuration when the laser power and detection distance is the same.
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Fiber Bragg Grating (FBG) fiber sensorFiber Bragg Grating (FBG) fiber sensor
Fiber Bragg Grating performance comparison with hydrophone

PZT as signal generator, FBG as signal receiver PZT as signal generator, Hydrophone as signal receiver
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frequency domain

 Note: FBG fiber sensor got same results as hydrophone in the frequency domain. It showed that the
FBG fiber sensor could be used to detect the ultrasound signal in water.
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Fabry-Perot (F-P) fiber sensorFabry-Perot (F-P) fiber sensor
F-P fiber sensor structure

Structure of the F-P fiber sensor Packaging of the F-P fiber sensor
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E is the quartz’s Young’s modulus, E = 7.2*1010 Pa;
µ is the quartz Poisson ratio, µ = 0.17;
h is the thickness of the quartz coverslip, h = 0.10 mm;
d is the diameter of the aluminum hole, d = 2.54 mm;
Yc = 0.0032 nm/Pa.
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f00 is the lowest resonant frequency;
α00 is a constant related to the vibrating modes, α00 = 10.21;
w is the mass density of the quartz, w = 2.50 g/cm3.
E is Young’s modulus of quartz coverslip, E = 7.20*1010 Pa;
µ is the Poisson ratio of quartz, µ= 0.17;
h is the thickness of the diaphragm, h=0.10 mm;
d is the diameter of the diaphragm, d=2.54 mm.
f00 could be calculated as 1.8805e+05 Hz which is 0.19 MHz.

Sensitivity (How much the center of the diaphragm will be
deformed when a certain acoustic pressure applied on it):

Hz

Resonant Frequency:
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Fabry-Perot (F-P) fiber sensorFabry-Perot (F-P) fiber sensor
F-P fiber sensor performance comparison with microphone
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Ultrasound signal detected by 
PCB microphone

Ultrasound signal detected by 
F-P fiber sensor (V20161202TEST2)

 At the distance of 10 mm, the Vpp from the
microphone and the FP sensor was 4.50 mV
and 2.23 mV, respectively.

 The F-P fiber sensor (V20161202TEST2)
has half the sensitivity of the microphone.

 The sensitivity of the microphone is 22.51
mV/Pa. Therefore, the F-P fiber sensor is
11.25 mV/Pa.

 The time cycle of the ultrasound signal
detected by the F-P fiber sensor is shown on
the left Fig which was 5.50 µs.

 The frequency was calculated as:
. 	

0.18	MHz.
 It was very close to 0.19 MHz, meaning it

matched the resonant frequency calculation
results.
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Water temperature measurementWater temperature measurement

Schematic diagram of the water temperature 
measurement setup [1]. Photo of the water temperature measurement setup.

Travel time V.S. water temperature based on Marczak 
equation.

Experimental results: water temperature V.S. travel time

 Note: It demonstrated the temperature measurement capability of the fiber optic ultrasound transducer 
system in water.
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Aluminum plate temperature measurementAluminum plate temperature measurement

Schematic diagram of steel plate temperature measurement [5].

Photo of the Aluminum plate temperature measurement

Experimental results of aluminum plate temperature test in (a) time 
domain and (b) frequency domain by FBG

 Note: FBG fiber sensor was used as the signal
receiver in the solid condition. It proved the fiber
optic ultrasound transducer system.
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Air temperature testAir temperature test

Experimental setup: Measure the temperature of a
torch flame [4].

Experimental results of air temperature test in time domain.

 Note: It demonstrated that fiber optic ultrasound transducer
system was able to measure the air temperature.
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Air temperature reconstructionAir temperature reconstruction

Air temperature test experimental setup [11]. 
(Top view)

Ultrasound signal between positions 2 and 8

 Note: Air temperature reconstruction was done by using 
this fiber optic ultrasound transducer system [11].
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Distributed sensing capability testDistributed sensing capability test

 Sidewall fiber generators (G1 and G2) and the FBG sensors (R1 and R2) were attached 
on  the ridge of the rebar. The FBG sensors were attached along the ridge of rebar using 
epoxy. 
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Distributed sensing capability testDistributed sensing capability test
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 Note: Ultrasound signal was detected in both receivers. This experimental demonstrated that the fiber optic 
ultrasound transducer system was able to use as multiple points at one time.
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GE pilot test GE pilot test 

Photo of optical temperature sensing systemPhoto of electrical temperature sensing system

Testing port on exhausting pipe of the ISBF

 Note: The test location was chosen within an exhausting
pipe of the ISBF. There are three standard ports along the
pipe. The temperature within the pipe is around 480 °F
when the burner starts. Two sensing systems which are
based on an electrical method and an optical method,
respectively, were used in the pilot test.
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GE pilot testGE pilot test
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temperature sensing system.

 Note: Both sensing systems successfully picked up the acoustic signal changes due to the 
temperature variation. Both sensing systems survived the high temperature environment. 

 The optically generated acoustic signal was not strong enough. This also limited the distance 
between the acoustic emitter and the acoustic receiver.

 More discussion about the GE pilot test is shown on the signal processing part.
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Furnace testFurnace test

Schematic of the furnace test setup

 Note: The F-P fiber sensor (V20170207TEST1) was used as the signal receiver. The Carbon Black shone by a
1000/1035 µm fiber was used as the acoustic signal generator. The water cooling system was used in this test. The
distance between the generator and the receiver was fixed as 10 mm. The furnace temperature was set at room
temperature (30 ºC) to high temperature (500 ºC). The furnace door was covered by aluminum foil during the test.
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Furnace testFurnace test

Photo of furnace test setup

F-P fiber sensor

Fiber generator
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Furnace testFurnace test

Ultrasound signal when the furnace setting 
temperature at 30 ºC (room temperature) and 500 ºC.

 Note: Since we didn’t know if the distance between 
generator and receiver was exactly 10 mm, we used the 
sound speed at 30 ºC which was 349.02 m/s to calculate the 
real distance. 

 349.02	 30.82	μ 	 	10.76	mm


. 	
. 	

	 	494.49 ,	which represent 334.63 ºC according 
to the temperature and speed equation; 
[http://www.sengpielaudio.com/calculator-speedsound.htm]

F-P fiber sensor spectrum when the furnace setting 
temperature at 30 ºC (room temperature) and 500 ºC
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Furnace testFurnace test

Thermocouple reference temperature compared with 
temperature calculated based on travel time at the same 

furnace setting temperature. The relationship between the different temperatures .
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 Brief overview of DOE project

 Sensing system development

 Signal processing and temperature field reconstruction
1. Signal processing for pulsed acoustic signal
2. Signal processing for coded sinusoidal acoustic signal
3. Temperature reconstruction algorithm with GRBF

 Conclusions & Future work

OutlineOutline
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Signal Processing for Pulsed Acoustic SignalSignal Processing for Pulsed Acoustic Signal

 The idea of signal processing: 
Maximum value of correlation indicates signal arrival.

Signal: Maximum value of correlation (signal & reference coincide in time) 
Noise:  Value of correlation without signal
SNR: Signal to noise ratio (Signal/Noise)

 The procedure of signal processing is shown as follow:
• Filtered signal with band-pass filter : 200kHz – 250kHz
• Sliding correlation : two methods

Optically Generated Acoustic Pulse Signal (Pilot Test)

Acoustic receiver sampling rate: 50MHz
Emitter: Acoustic optical fiber -- pulse acoustic signal
Signal detection: sliding correlation
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Step 1: Band filteringStep 1: Band filtering

Using Chebyshev filter with pass-band: 200kHz to 250kHz

s

s
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Step 2: Sliding Correlation (Method 1)Step 2: Sliding Correlation (Method 1)
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• Method 1: 
1. Obtain envelopes of both reference and filtered signals
2  Calculate correlation of envelopes
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Signal to noise ratio (SNR) > 300
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Step 2: Sliding Correlation (Method 2)Step 2: Sliding Correlation (Method 2)
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• Method 2: 
1. Calculate correlation between filtered signal and reference 
2. Obtain envelope of correlation

s

Signal to noise ratio (SNR) > 300
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Overall Pilot Test ResultsOverall Pilot Test Results
Case 1st method compare

to 14
Relative
Arrival Time
(us)

2nd method compare to
14

Relative
Arrival Time
(us)

Between 1 4415.00 -217.00 -4.34 4402.00 -283.00 -5.66
Combustion 1 4850.00 218.00 4.36 4926.00 241.00 4.82

4603.00 -29.00 -0.58 4648.00 -37.00 -0.74
4580.00 -52.00 -1.04 4623.00 -62.00 -1.24

Between 2 4488.00 -144.00 -2.88 4420.00 -265.00 -5.30
Combustion 2 4609.00 -23.00 -0.46 4652.00 -33.00 -0.66

4589.00 -43.00 -0.86 4634.00 -51.00 -1.02
4613.00 -19.00 -0.38 4653.00 -32.00 -0.64

Between 3 4493.00 -139.00 -2.78 44.36.00 -249.00 -4.98
Combustion 3 4622.00 -10.00 -0.20 4626.00 -59.00 -1.18

4598.00 -34.00 -0.68 4646.00 -39.00 -0.78
4620.00 -12.00 -0.24 4671.00 -14.00 -0.28

Between 4 4630.00 -2.00 -0.04 4565.00 -120.00 -2.40
Combustion 4 4617.00 -15.00 -0.30 4666.00 -19.00 -0.38

4640.00 8.00 0.16 4689.00 4.00 0.08
4657.00 25.00 0.50 4690.00 5.00 0.10

Combustion 5 4611.00 -21.00 -0.42 4656.00 -29.00 -0.58
4632.00 (refer) 0.00 0.00 4685.00 0.00 0.00
4630.00 -2.00 -0.04 4677.00 -8.00 -0.16

Between 5 4520.00 -112.00 -2.24 4467.00 -218.00 -4.36
Combustion 6 4523.00 -109.00 -2.18 4481.00 -204.00 -4.08

4593.00 -39.00 -0.78 4644.00 -41.00 -0.82
4623.00 -9.00 -0.18 4676.00 -9.00 -0.18
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Overal Pilot Tests ResultsOveral Pilot Tests Results
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Signal Processing for Coded Sinusoidal SignalsSignal Processing for Coded Sinusoidal Signals

Case 2 : Code Division Multiple Access (CDMA) Scheme

 Orthogonal Code based coding: 
• Enable parallel multiplexing mode 
 Multi-channel 

• Increase Signal to Noise Ratio (SNR)
Method: 

Assign each emitters with a code from a set of orthogonal
pseudo-random sequences
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 Design Parameters 

• f :      the acoustic carrier signal frequency (fixed during the test)
• L: Number of bits in the code
• M: cycles of carrier signal for one bit of code

 Performance 
• Number of channels:  L

• Time-of-flight (TOF) sampling rate:  

• SNR and uncertainty : Proportional to  LM 

Design ParametersDesign Parameters

LM
f
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 Correlation and autocorrelation
• Correlation of the received signal with the original acoustic signal:

where                  , is the length of signal
• Correlation of the noise signal with original acoustic signal:

Assume the distribution of                 is at mean 0, with variance

If      and      are irrelevant,           would be very close to 0.

acoustic signal with its magnitude            coded 
as pseudorandom sequences

Analysis for SNR and UncertaintyAnalysis for SNR and Uncertainty

 The signal captured by the i-th receiver at time index 
0( , , ) ( , , ) ( , , , ) ( )i iI m n k S m n k D m n P k  

spatial distribution of the acoustic signal
noise and other transmitters’ signal
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SNR Simulation ResultsSNR Simulation Results

Order n SNR (dB)
5 31 -10
6 63 -20
7 127 -25
8 255 -30
9 511 -35
10 1023 -40
11 2047 -45

• SNR testing results for different length (fixed f and M)
-- add Gaussian white noise as back ground noise
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Pilot Test SetupPilot Test Setup

 Pilot test setup:
• Emitter: PZT -- sinusoidal acoustic signal (from pilot test measurement)

activate emitter twice:
at t = 8ms  &  at t = 16ms.

• Frequency of PZT : =400
• Sampling rate : 50MHz

 Signal coding is simulated using segments of experimental data
• L=31 bits per code
• M=100 cycles per bit
• Allows 31 channels simulataneously
• ToF sampling rate = 129 Hz
• SNR (simulated in following slides)
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SNRSNR

Signal to noise ratio (SNR)

ms

ms
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SNR - ContinuedSNR - Continued

Signal to noise ratio (SNR)  1/0.00015>6000

Same noise

Multiply signal by 

0.01

0.00015 (still work)

0.0001  (starting to fail)
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On-going work: Uncertainty AnalysisOn-going work: Uncertainty Analysis

is the uncertainty for TOF measurement.

Correlation of the 
original acoustic signal
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Signal Processing: ResultsSignal Processing: Results

Considering a simplified free field that acoustic attenuation is only due to scattering.
A doubling of the distance from a noise source reduces the sound pressure with 6dB.

*Using same emitter and 
receiver setup as in pilot tests

Optically driven pulse signal PCT code modulated sin wave

SNR (20cm distance) 300  (24.7dB) 6000 (378dB)

Signal duration 0.2ms (receiver side) 7.8ms

Correlation signal width 0.3ms 
(Better for uncertainties)

2.5ms

Expected distance that ToF
can still be picked up*

3m 15m

Overall efficiency similar
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Temperature Field Reconstruction AlgorithmTemperature Field Reconstruction Algorithm

 polynomial interpolation approximation and Taylor expansion
 a finite summation of polynomial series with residual error
 a global method, for function with local property, it cannot 
demonstrate good accuracy

 Fourier parameterization
a summation of simple oscillating functions (sines and cosines)
Gibbs Phenomenon: large oscillations near the jump discontinuity
cannot be applied to complex geometries

 GRBF
 better approximation capabilities for most nonlinear functions
 superior in scalability
 more efficient for higher dimensional space and complex geometry
 exponentially convergent
 good local property
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Temperature Field Reconstruction Algorithm with 
GRBF

Temperature Field Reconstruction Algorithm with 
GRBF

 GRBF

 and are the predefined center and variance, X is position with 3
dimensions
Any continuous nonlinear function can be approximated by the summation
of basis functions with appropriate weights

 The relationship between speed of acoustic waves and temperature is as 
following:

 we can approximate the temperature field via GRBF:
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Design ParameterDesign Parameter

N: The number of basis functions

Simulation results for different choice of N 

 Larger N leads to smaller error

 Benefits decreases as N is large

N 5 6 7 8 9 10 11

Average 
absolute error

81.31°C 28.57°C 27.63°C 27.14°C 25.28°C 26.60°C 23.58°C

Average 
relative error

6.94% 2.53% 2.46% 2.21% 2.19% 2.18% 1.98%
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Simulation Results with GRBFSimulation Results with GRBF
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Notes: In the simulation 10 sensors
were evenly distributed, 10 basis
functions were used, and 24 paths
were chosen.

• 2D temperature field case I:
Unimodal symmetric
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Simulation Results with GRBFSimulation Results with GRBF

• 2D temperature field case II: 
Unimodal deflection
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Simulation ResultsSimulation Results

Reconstruction Error

Model
Maximum
absolute
error

Maximum 
relative 
error

Average
absolute 
error

Average 
relative
error

Unimodal
symmetric 64.6003°C 4.97% 23.5141°C 2.68%

Unimodal
deflection 89.8020°C 8.95% 24.9697°C 2.19%
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Initial Uncertainty AnalysisInitial Uncertainty Analysis

Suppose N is the number of basis functions, and M is the number of paths.

Without measurement noise, we have

which can be written as
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With measurement noise, we have

which can be written as
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Note: Measurement noise in 
traveling time will propagate 
into the integral process for 
reconstruction
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Measurement Noise in Travelling Time-Simulation 
Analysis

Measurement Noise in Travelling Time-Simulation 
Analysis

Fig.1. Reconstruction with measurement noise

Fig.2. Reconstruction without measurement noise

Measurement noise [Add 1% error in 
ToF] will propagate into the integral 
process for reconstruction

1. The maximum absolute error is 
91.98 °C

2. The average absolute error is 
17.23 °C

3. The maximum relative error is 
8.82%

4. The average relative error is 
1.47% 
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Experimental Results (candle)Experimental Results (candle)

 Sensor location: sensors are distributed symmetrically (Fig.1)
 Reconstruction results of temperature field in 2D (Fig.2)

Fig.1.  Sensor distribution Fig.2.  Temperature field
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Future Work for Temperature Field
Reconstruction

Future Work for Temperature Field
Reconstruction

 Assumes no knowledge about the dynamics of temperature field
 A dynamic model of the temperature field exists

 Key idea
 Utilize known dynamic model of the temperature field
What to be estimated are high dimensional states of the dynamic model
Measurements can be utilized to update states of the temperature field 
recursively (Kalman Filter).
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 Brief overview of DOE project
 Sensing system development
 Signal processing  and temperature field reconstruction 
 Conclusions & Future work

OutlineOutline
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ConclusionsConclusions

 What we have achieved.
1. Temperature test in water condition has been conducted.
2. Temperature test in a steel plate has been conducted.
3. Temperature test in air condition (furnace) has been conducted.

The temperature range for our all-optical fiber system in air condition
(furnace) was 19 ºC - 500 ºC.
4. The pilot test conducted in GE has proved our system is workable.
5. ToF can be detected with high SNR in pilot tests.
6. Optically driven acoustic emitter is comparable in efficiency to PCT

transducer used .
7. Based on the pilot test results, it is optimistic that the sensors and

signal processing will work in the scale of meters.
7. This Project has partially supported 1 postdoctoral researcher, 3 PhD
students, 1 master student and 2 undergraduate students.
8. Five conference papers have been published. Three journal papers are
in preparation.
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Patent: 
2016 Xingwei Wang, Nan Wu, “Photoacoustic Probe”, WO2016178981 
A1, WO2012112890A2; EP2675361A2; US20130319123A1; 
WO2012112890A3. 
PCT nationalization coming up in November.
Academic Tech Ventures (ATV) INC. will option UML 15-32 IP and 
explore its commercialization.
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