DEVELOPMENT OF REDUCED ORDER MODEL FOR REACTING GAS-SOLID FLOW USING PROPER ORTHOGONAL DECOMPOSITION

Janhavi Chitale, Dwayne McDaniel, Seckin Gokaltun, George S. Dulikravich Florida International University, Miami, FL

Paul Cizmas

Texas A&M University, College Station, TX

03/22/2017

HBCU/MI Award DE-FE0023114 Review Meeting Program Manager: Jessica Mullen

Outline

- □ Introduction
- Project Objectives
- Basic Concepts of Mathematical Modeling
- □ Validation of ROM for flows with heat transfer
- Constrained ROM for improved stability
- Development of ROM for Chemically Reacting Flows

Introduction

- Need for mathematical modelling of multiphase flow devices in fossil fuel processing plants
- Highly coupled nature of partial differential equations representing such flows
- Tremendous computational time requirements for the numerical simulation of transient transport phenomena
- Application of POD based ROM to reduce computational time in multiphase flows is a prominent approach

Statement of Project Objectives

- 4
- Supports the vision of the NETL 2006 Workshop on Multiphase Flow Research¹:
 - To ensure that by 2015 multiphase science based computer simulations play a significant role in the design, operation, and troubleshooting of multiphase flow devices in fossil fuel processing plants."
- "Develop reduced order models from accurate computational results for use by design engineers" is listed as HIGH priority under Numerical Algorithm and Software Development category of the Roadmap.
- Computational advances will be provided to NETL's open-source CFD tool MFIX and validation cases will be provided.

¹ Report on Workshop on Multiphase Flow Research, Morgantown, WV, Ed. M. Syamlal, DOE/NETL-2007/1259, 2006

Statement of Project Objectives

- DE-FOA-0001041 requires that the proposed ROMs should:
 - "be at least 100 times faster than an equivalent multiphase CFD simulation."
 - "allow extrapolation within certain parameter ranges." (could be based on the results of several multiphase CFD simulations)
 - "be quantified for uncertainty, and the ROM must run without failure in the allowed parameter ranges."
- Generate numerical data, necessary for validation of the models for multiple fluidization regimes
- Expose minority students to scientific research in the field of fluid dynamics of gas-solids flow systems
- Maintain and upgrade the educational, training and research capabilities of Florida International University

Current Focus

- Validation of ROM for multiphase flows with heat transfer
 - Development of a test case for non-isothermal fluidized bed flow
 - Development of constrained ROM to improve the stability
- Development and validation of ROM for chemically reacting multiphase flows with heat transfer
 - Reduced kinetics model for Methane combustion
 - Satisfying the Entropy Inequality Equation
 - Development of a test case for validation

Reduced Order Modeling (ROM)

□ To reduce computational time by a factor of 100+

□ To quantify accuracy of ROM with respect to FOM

Several methods for model reduction

- Transfer Function Interpolation
- Krylov Subspace method
- Proper Orthogonal Decomposition

Proper Orthogonal Decomposition (POD)

- Powerful method of data analysis aimed at obtaining low dimensional approximate descriptions of high-dimensional processes
- Provides optimal basis for modal decomposition of data set
- Extracts time-independent orthonormal basis function and timedependent amplitude coefficients

$$u(x,t_i) = \sum_{k=1}^{M} \alpha_k(t_i) \varphi_k(x), \quad i = 1,...,M$$

Modal Decomposition (Method of Snapshots)

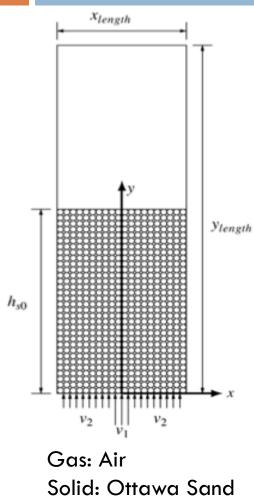
- □ Reconstruction such as to minimize least square truncation error $\varepsilon_m = \left\langle \left\| u(x,t_i) - \sum_{k=1}^m \alpha_k(t_i) \phi_k(x) \right\|^2 \right\rangle$
- Equivalent to finding basis functions that maximizes the average normalized projection of the basis functions onto the snapshots

$$\max_{\phi \in L^{2}(\Omega)} \frac{\left\langle \left| (u,\phi) \right|^{2} \right\rangle}{\left| \left| \phi \right| \right|^{2}}$$

Condition reduces to:
$$\int_{\Omega} \left\langle u(x)u^{*}(y) \right\rangle \phi(y) dy = \lambda \phi(x)$$

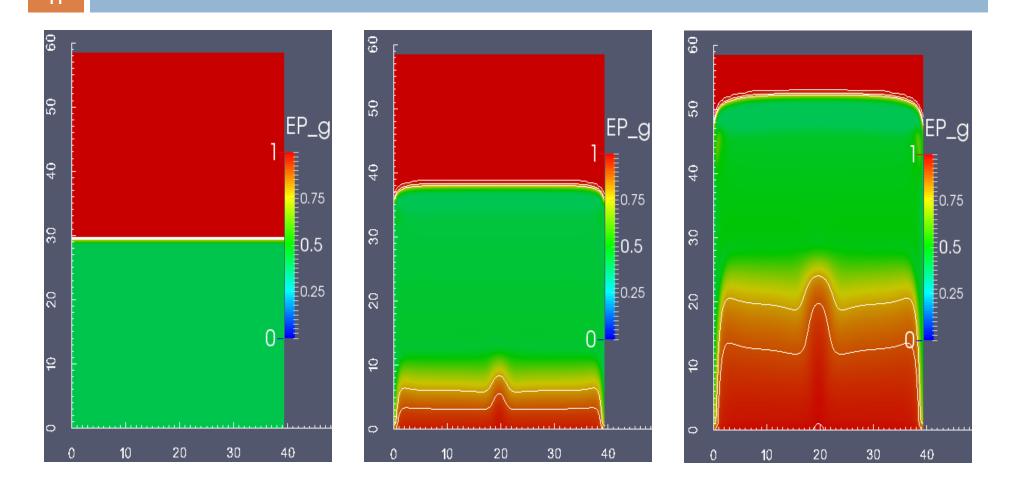
Simplifies to eigenvalue problem: $R(x,y)\Phi(x) = \lambda \Phi(y)$ where $R(x,y) = \frac{1}{M} \sum_{i=1}^{M} u(x,t_i) u^T(y,t_i)$

Non Isothermal Fluidized Bed



Parameter	Description	Units	Value
Xlength	Domain length X direction	cm	39.37
Ylength	Domain length Y direction	cm	58.44
lmax	# of cells in X direction	-	124
Jmax	# of cells in Y direction	-	108
V1	Vertical Jet Velocity	cm/sec	577
V2	Vertical Co-flow Velocity	cm/sec	284
Pg	Static Pressure at Outlet	g/cm/s²	1.01e ⁶
Tg	Gas Temperature	К	450
Ts	Solids Temperature	К	297
μ_{g}	Gas Viscosity	g/cm/s	1.8e ⁻⁴
ρ _s	Particle Density	g/cm ³	2.61
D _p	Particle Diameter	cm	0.05
h _{so}	Packed Bed Height	cm	29.22

Void Fraction for the Non-Isothermal Fluidized Bed Flow

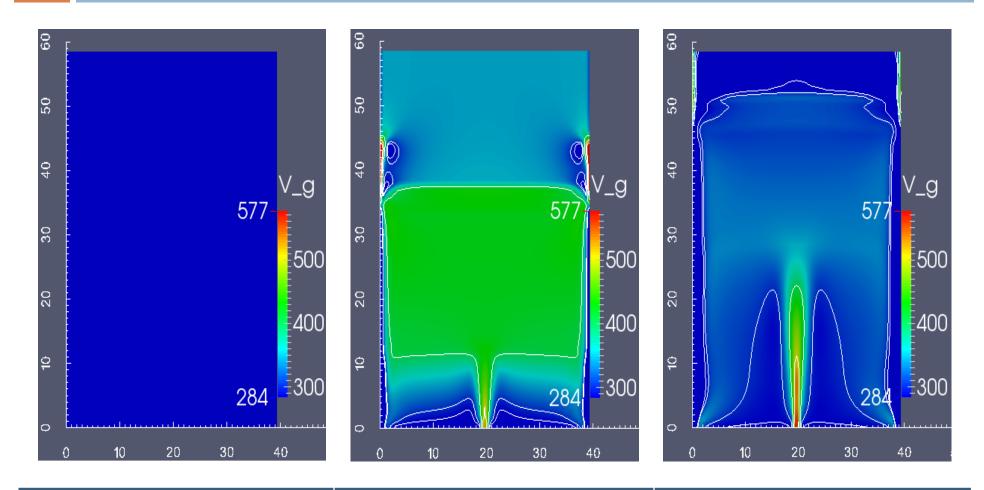


0 Sec

0.05 Sec

0.1 Sec

Vertical Gas Velocity for the Non-Isothermal Fluidized Bed Flow



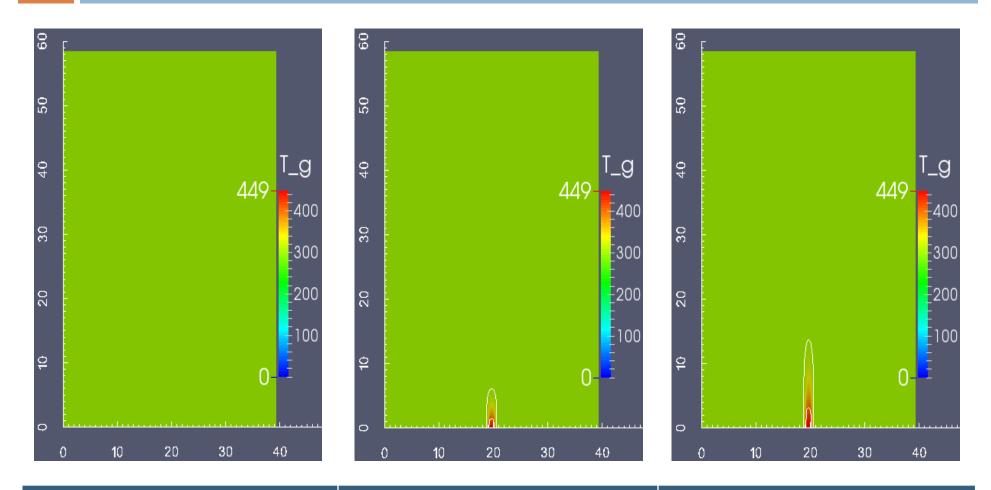
0 Sec

12

0.05 Sec

0.1 Sec

Gas Temperature for the Non-Isothermal Fluidized Bed Flow



0 Sec

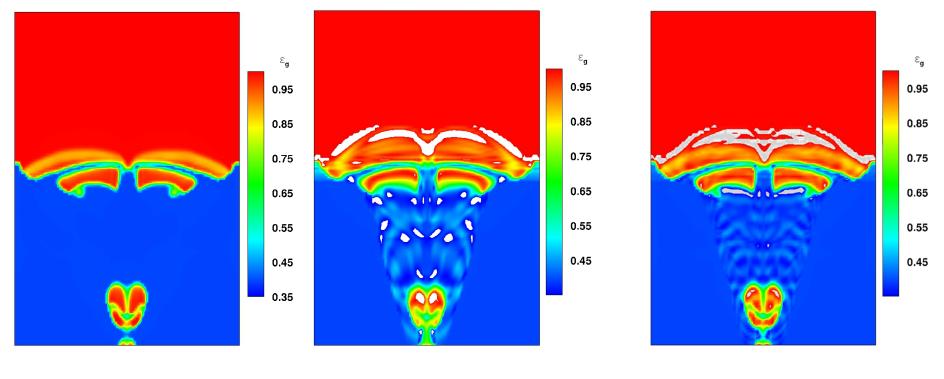
13

0.05 Sec

0.1 Sec

Isothermal Fluidized Bed

 Reconstruction of a void fraction when bubbles (discontinuities) are present leads to infeasible results



FOM

ROM (16 modes)

ROM (32 modes)

Karush-Kuhn Tucker (KKT) Conditions

- Heavily used in mathematical optimization for satisfying equality and inequality constraints
- First Order Conditions
 - Minimize f subjected to
 Stationary Condition
 Stationary Condition
 $\nabla f + \sum_{i=1}^{m} \lambda_i \nabla g_i = 0$ Complementary Slackness
 $\lambda_i g_i = 0$ Non-Negative Lagrange Multipliers
 $\lambda_i \ge 0$

Application of KKT Conditions to Gas Void Fraction

$$\Box \text{ Function to minimize } J = \left\| \tilde{A}^{\varepsilon_g} \alpha^{\varepsilon_g} - \tilde{B}^{\varepsilon_g} \right\|^2$$

subject to: $\varepsilon_g \le 1.0 \longrightarrow \varepsilon_g = \varepsilon_g^* + \Phi \alpha$

Stationary Condition: $J_{\alpha'} = 2\tilde{A}^T \tilde{A} \alpha' - 2\tilde{A}^T \tilde{B} + \Phi^T \lambda = 0$ Constraint: $g_1 : \varepsilon_g^* + \Phi \alpha' - 1.0 \le 0$ $\begin{bmatrix} 2\tilde{A}^T \tilde{A} & \Phi^T \\ \Phi & 0 \end{bmatrix} \begin{cases} \alpha' \\ \lambda \end{cases} = \begin{cases} 2\tilde{A}^T \tilde{B} \\ 1.0 - \varepsilon_g^* \end{cases}$

١

Chemically Reacting Flows

Accurate representation of reaction mechanism and rate

Reduced kinetics model for a chemical reaction

- Motivation
 - Model Complexity
 - Increased Computational Time
- Importance of satisfying entropy inequality equation

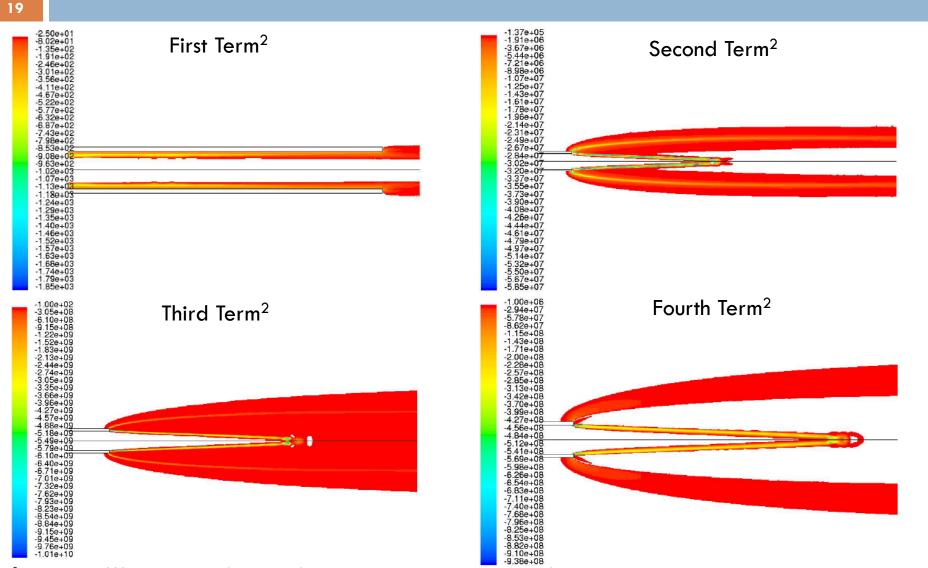
Entropy Inequality Equation (EIE)

$$-tr[(T + PI).D] + \frac{1}{T} \epsilon.\nabla T + cRT \sum_{B=1}^{N} j_{(B)} \cdot \frac{d_{(B)}}{\rho_{(B)}} + \sum_{j=1}^{K} \sum_{B=1}^{N} \mu(B)r(B,j) \le 0$$

- T -Stress Tensor
- P Thermodynamic Pressure
- I Identity Matrix
- D-Rate of Deformation Tensor
- c- Total Molar Density
- R- The Gas Law Constant
- T- Temperature
- N- Number of Species

- J(B)- Mass flux of Species B relative to v
- \square $\rho(B)$ Mass density of Species B
- K- Number of Reactions
- μ(B)-Chemical Potential of
 Species B
- r(B, j)- Rate of Production of moles of species B per unit volume by homogeneous chemical reaction j

EIE for Methane Combustion



²Chambers,S.B. (2005). Investigation of combustive flows and dynamic meshing in computational fluid dynamics (M.Sc Thesis, Texas A&M University).

Reduced Kinetics Model for Methane Combustion

20

Basic Reaction Equations

$$CH_4 + 1.5O_2 \rightarrow CO + 2H_2O \qquad \dots 1$$
$$CO + 0.5O_2 \leftrightarrow CO_2 \qquad \dots 2$$

Calculation of Rate of Reaction

$$k_{1} = A_{1}e^{\frac{\left(\frac{E_{1}}{R}\right)}{T}}[CH_{4}]^{0.7}[O_{2}]^{0.8} \text{ Where } A_{1} = 5.012 * 10^{11}s^{-1}, \frac{E_{1}}{R} = 24054 \text{ }^{\circ}K$$

$$k_{2f} = A_{2f}e^{\frac{\left(\frac{E_{2f}}{R}\right)}{T}}[CO_{2}]^{1}[O_{2}]^{0}0.25[H_{2}O]^{0} * 0.5$$
Where $A_{2f} = 2.239 * 10^{12}(m^{3}/Kmol)^{0.75}s^{-1}, \frac{E_{2f}}{R} = 20807 \text{ }^{\circ}K$

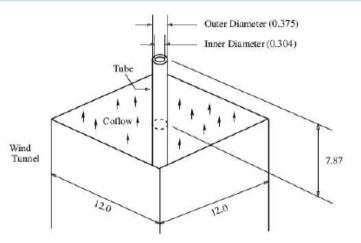
$$k_{2b} = A_{2b}e^{\frac{\left(\frac{E_{2b}}{R}\right)}{T}}[CO_{2}]^{1}$$
Where $A_{2b} = 5 * 10^{8}(m^{3}/Kmol)^{0.75}s^{-1}, \frac{E_{2b}}{R} = 20807 \text{ }^{\circ}K$

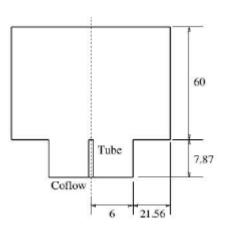
Methane Combustion Test Case

 Methane is injected through central tube at 285 cm/sec

□ Co-flow consists of air at 40 cm/sec

Species Mass Fraction at boundaries					
Species	Central Tube	Co-Flow			
CH_4	0.1527	0			
O ₂	0.1944	0.2295			
CO ₂	0.0004	0.0005			
H ₂ O	0.0066	0.0078			
N_2	0.6459	0.7491			





All dimensions are in inches Drawing is not to the scale

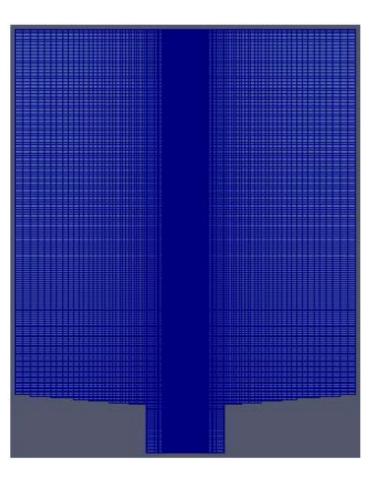
Methane Combustion Case in MFIX

22

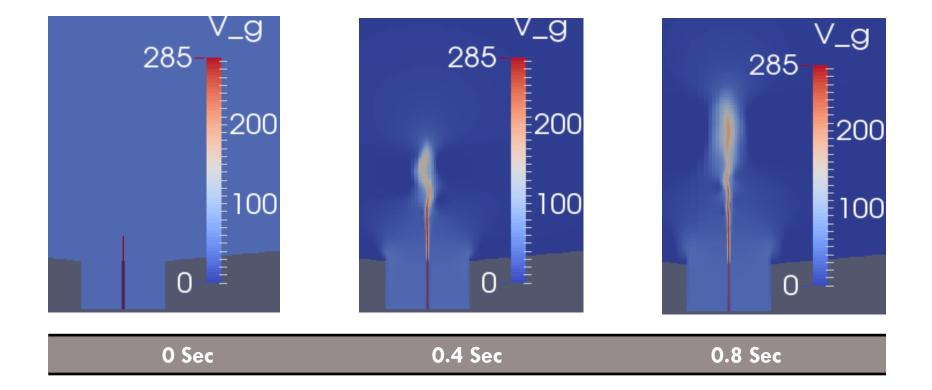
Converging-Diverging Grid using Cut Cell Technique

Sr #	X_West	X_East	Length (cm)	# of cells	ERX
1	0	69.524	69.524	70	0.045
2	69.524	69.614	0.09	2	1
3	69.614	70.386	0.772	4	1
4	70.386	70.476	0.09	2	1
5	79.476	140	69.524	70	22.071

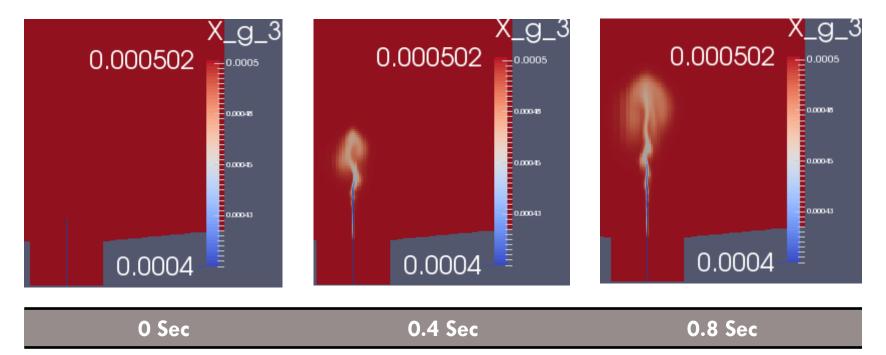
Sr #		Y_ South	Length (cm)	# of cells	ERY
1	0	20	20	20	0.5
2	20	193	173	173	2



Vertical Gas Velocity in FOM

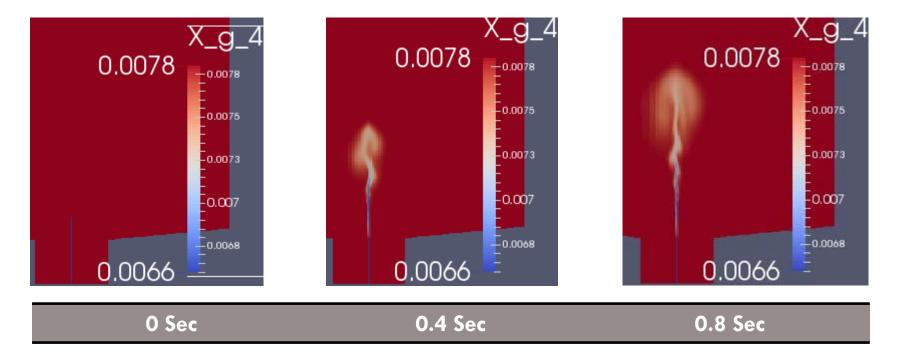


Product Species Mass Fraction in FOM



The above graphs show mass fraction of CO₂ in the domain at 0, 0.4 and 0.8 sec

Product Species Mass Fraction in FOM



The above graphs show mass fraction of H₂O in the domain at 0, 0.4 and 0.8 sec

Conclusion

- Successfully developed test case for validation of ROM for flows with heat transfer
- Application of KKT conditions to improve model stability is in process
- Developed test case for validation of ROM for flows with reacting flows

Acknowledgements

Thank You

Governing Equations

29

Continuity Equation

$$\frac{\delta}{\delta t} \left(\varepsilon_g \rho_g \right) + \nabla \left(\varepsilon_g \rho_g \right)_{vg} = \sum_{n=1}^{N_g} R_{gn}$$

Gas phase Temperature Equation

$$\varepsilon_{g} \rho_{g} C_{pg} \left(\frac{\partial T_{g}}{\partial t} + \vec{v}_{g} \cdot \nabla T_{g} \right) = -\nabla \cdot \overrightarrow{q_{g}} - H_{g1} - H_{g2} - \Delta H_{rg} + H_{wall} (T_{wall} - T_{g})$$

Governing Equations

30

Gas phase momentum Equation:

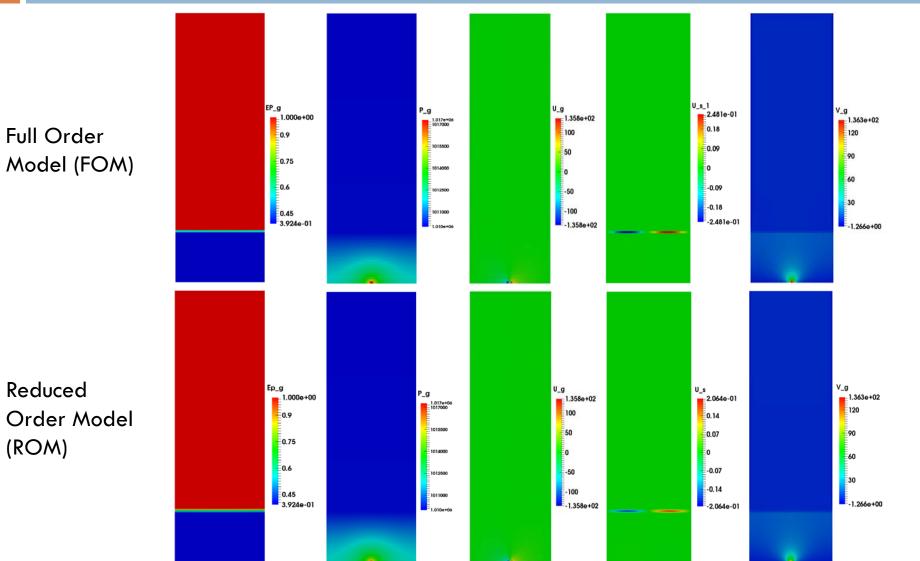
$$\frac{\delta}{\delta t} \left(\varepsilon_g \rho_g _{\overrightarrow{v_g}} \right) + \nabla \left(\varepsilon_g \rho_g _{\overrightarrow{v_g v_g}} \right) = \nabla \left(\overline{S_{g+}} \varepsilon_g \rho_g _{\overrightarrow{g}} \sum_{l=1}^M \overline{I_{gm}} \right)$$

Species Mass Balance Equation:

$$\frac{\delta}{\delta t} (\varepsilon_g \rho_g X_{gn}) + \nabla \cdot (\varepsilon_g \rho_g X_{gn_{vg}}) = \sum_{n=1}^{N_g} R_{gn}$$

Validation of ROM for Isothermal Fluidized Bed

31



Validation of ROM with KKT conditions

