Technological and Business Challenges of a Modular Process Technology – Case Study

Dr. Raghbir Gupta

Presented at the NETL/DOE Modular Gasification-Based Energy Systems Workshop

March 21, 2017
Keys to a Successful Technology Commercialization

Feasibility
Innovative Technology

+ Viability
Economically Competitive

+ Desirability
Profitable Business Model

Successful Commercialization of Technology
How to Reduce Costs and Economy of Scale?

- Eliminate or reduce solids handling
- Reduce number of specific equipment pieces
- Reduce footprint/size of specific equipment pieces
- Explore process intensification
- Reduce number/size/cost of expensive equipment units, such as compressors, heat exchangers, etc.
- Modularization/standardization/mass production to reduce equipment costs (including advanced manufacturing)
- Advanced technologies/designs that reduce cost and/or improve efficiency (efficiency improvements help reduce overall plant costs)
- Advanced catalysts and sorbents to improve efficiency of syngas cleanup and conversions
Case Study — The Flaring Problem

- Over **5.5 tcf per year** of natural gas is flared worldwide.

- In 2014, over **288 bcf** of natural gas was flared in the US.
 - More than the consumption of Maryland and Washington DC.

- A large proportion of ND well pads flare relatively small amounts of gas.

- In addition to flaring other sources of natural gas are typically distributed and small such as bio-gas.
Conventional Conversion Technologies

Natural Gas → Synthesis Gas Production → GTL Synthesis → Product Collection → Liquid Product

* Picture from www.eajv.ca, June 17, 2015

Traditional NG conversion technologies do not scale down economically

Small-Scale Modular Conversion Technologies

Natural Gas → Synthesis Gas Production → GTL Synthesis → Product Collection → Liquid Product

* Picture from www.eajv.ca, June 17, 2015

Replaced by:

RTI MicroReformer
Economies of Scale

- Cost reductions from large scale operations
 - Reduce overhead, increase efficiency, reduce personnel cost
 - Pushing to physical limits in size

Mass Manufacture and Scaling by Numbers

- Cost reduction from producing large numbers of short lived units
 - Reduce cost by learning, improved accuracy, faster response
 - Pushing the limits of automation and coordination

Small Unit Size

- Allows for centralized or distributed deployment

Fast Replacement Times

- Reduce business risk, and risk of obsolescence
- Gain flexibility in right-in-time deployment
Advantages of Being Small

Reliability constraints are relaxed
- Replaced by ultra-high redundancy
- Automatic fault detection and replacement

Shorter deployment times
- Faster response time
- Risk reduction

Flexibility in deployment

Operational life times can be shortened
- More learning, mistakes are less costly
- Reduced risk

Efficiency?
50,000 scfd MicroReformer at RTI

- Produces syngas with H₂/CO ratio at 1.4 with greater than 90% O₂ and CH₄ conversion
- Utilizes a standard mass produced engine/genset
- Modifications based on available commercial parts
- Methanol micro reactor inline for direct exhaust testing
The engine is the key enabler for these technologies.
Modular systems require development of all system components.

Key BOP areas for Innovation:
- Compression
- Heat Management
- Separations
- Controls

Balance of Plant (BOP) components routinely exceed 50% of equipment cost in traditional large plants.

Amount BOP increases to in excess of 85% of the equipment cost in our MicroReformer System.
RTI MicroReformer Compares Favorably with World-Scale Production

- Syngas costs from RTI micro-reformer compare favorably with conventional reformer costs (based on $3/MMBtu NG cost).
- The RTI MicroReformer can be located at the site of low-cost stranded, associated, or landfill gas, making its potential syngas costs even more competitive.

* Data analysis from manuscript submitted for publication by RTI and Columbia University, references from other cases studies contained in manuscript.
Can Small-Scale Systems be Competitive?

RTI small-scale methanol initial assessments compare favorably
- 2,000-3,000 tpy
 - **Capital Cost $1-2M vs. $1-5B for large scale investment**
- Key driver is the mass manufactured engine cost is low
- Innovation in *balance of plant components* is critical to accelerate development and lower cost
References of Modularization in the Natural Gas Field

Natural Gas Conversions

Natural Gas Liquids Separations

Distributed processing of natural gas will require a new business model

- Ownership of different links of the value chain (feedstock suppliers, engine suppliers, methanol/NGL conversion, distribution, system integration, etc.)
- Geographical diversity of resources adds to the challenge
- Public-private partnerships
- Policy/regulation issues

Licensing – licenses technology to a system supplier and the system supplier runs the system, operations and is responsible for product sale & distribution.

Subscription – subscription fee for product sold by the subscriber. Technology developer sells the system to the subscriber who is responsible for operations, product sale & distribution.

Ownership – technology developer owns the entire value chain from building equipment, operating, selling and distributing the product.

Hybrid – combination of the above/new business model.
Commercializing Modular Technologies requires:

- Key innovations to challenge the economies of scale.
- Laser focus on complete technology development.
 - How do you scale-up a material or process cost-effectively?
 - How do you standardize production?
 - How to design for robustness and unique operating conditions?
 - What are the Balance of Plant issues?
 - How do you ensure safety and reliability?
 - Automation, remote troubleshooting, and data security

- Understanding of market and customer requirements.
 - New thoughts on business models/monetization beyond licensing
 - Flexible deployment to multiple segments
 - Relationship with first adopters to jump from development to commercial
Advanced Modular Coal Gasification – One Example

Improvements:
- Eliminates most solids handling
- Advanced technologies reduce cost and size and improve efficiency (e.g., operate higher temperature)
- Reduces number of equipment pieces
- Improves reliability/availability/maintainability
- Avoids LTGC and slag handling
- Reduces cleanup requirements

Legend:
- Air Sep/H Handling
- Solids Handling
- Liquid Feed Handling
- Gasification Block
- Water Treatment
- Syngas Cleanup/Conditioning
- Syngas Conversion
Raghubir Gupta
Senior Vice President
Energy Technology Division
RTI International
gupta@rti.org
+1-919-541-8023